E-Book, Englisch, Band 30, 473 Seiten
Wada / Murata Lipids in Photosynthesis
1. Auflage 2009
ISBN: 978-90-481-2863-1
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Essential and Regulatory Functions
E-Book, Englisch, Band 30, 473 Seiten
Reihe: Advances in Photosynthesis and Respiration
ISBN: 978-90-481-2863-1
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited 'Lipids in Photosynthesis: Structure, Function and Genetics,' which became a classic in the field. 'Lipids in Photosynthesis: Essential and Regulatory Functions,' belongs, with its predecessor, in every plant and microbiological researcher's bookcase.
Autoren/Hrsg.
Weitere Infos & Material
1;From the Series Editor;7
2;Contents;13
3;Preface;19
4;Contributors;21
5;The Editors;24
6;Author Index;26
7;Color Plates;27
8;1 Lipids in Thylakoid Membranes and Photosynthetic Cells;43
8.1;Summary;43
8.2;I Introduction;44
8.3;II Genome Sequenes Reveal Genes Involved in Lipid Synthesis;44
8.3.1;A Cyanobacterial Genomes;44
8.3.2;B Lower-Plant Genomes;45
8.3.3;C Higher-Plant Genomes;45
8.4;III Mutagenesis and Transgenic Techniques;46
8.4.1;A Targeted Mutagenesis in Cyanobacteria;46
8.4.2;B T-DNA Insertional Mutagenesis;46
8.4.3;C Repression of Gene Expression by Antisense RNA and RNA Interference;47
8.5;IV Crystallographic Analysis of Soluble and Membrane-Bound Proteins;47
8.5.1;A Soluble Proteins;47
8.5.2;B Membrane-Bound Proteins;47
8.6;V Electron Microscopy;48
8.7;VI Improvements in Analytical Techniques;48
8.8;VII Physical Methods for Assessing the Fluidity of Membrane Lipids;48
8.9;VIII DNA Microarrays;48
8.10;IX Perspective;49
8.11;Acknowledgements;49
8.12;References;49
9;2 Fatty Acid Biosynthesis in Plants - Metabolic Pathways, Structure and Organization;52
9.1;Summary;53
9.2;I Introduction;53
9.3;II Biosynthesis of Fatty Acids;53
9.3.1;A Acetyl-CoA Carboxylase;54
9.3.2;B Fatty Acid Synthase;54
9.4;III Export of Fatty Acids from the Plastid;56
9.5;IV Biosynthesis of Polyunsaturated Fatty Acids, Unusual Fatty Acids and Chain Elongation;57
9.6;V Acylation Reactions and the Biosynthesis of Triacylglycerol;58
9.7;VI Structural Models for Fatty Acid Biosynthetic Pathway Components;61
9.7.1;A Individual Enzymes and Their Structure;62
9.7.1.1;1 Acyl-Carrier Protein;62
9.7.1.2;2 Holo-ACP Synthase;62
9.7.1.3;3 Acetyl-CoA Carboxylase;63
9.7.1.4;4 Malonyl CoA: ACP Transacylase;63
9.7.1.5;5 FAS Elongation Cycle Enzymes: 3-Ketoacyl- ACP Synthases, 3-Ketoacyl-ACP Reductase, 3-Hydroxyacyl-ACP Dehydratase and Enoyl-ACP Reductase;63
9.7.1.6;6 Acyl-ACP Thioesterase;64
9.7.1.7;7 Acyltransferase;65
9.7.1.8;8 Desaturase;66
9.7.2;B Interaction of Individual Proteins;66
9.7.2.1;1 Acetyl-CoA Carboxylase;66
9.7.2.2;2 Fatty Acid Synthase Components;66
9.7.3;C Pathways of Fatty Acid Metabolism;68
9.8;VII Integration of Fatty Acid Biosynthesis with Other Metabolic Machinery;68
9.9;VIII Conclusions;69
9.10;Acknowledgements;69
9.11;References;69
10;3 Biosynthesis and Function of Chloroplast Lipids;76
10.1;Summary;76
10.2;I Introduction;77
10.3;II Structures of Chloroplast Lipids;77
10.4;III Biosynthesis of Chloroplast Lipids;79
10.4.1;A Monogalactosyldiacylglycerol;79
10.4.2;B Digalactosyldiacylglycerol;80
10.4.3;C Sulfoquinovosyldiacylglycerol;81
10.4.4;D Phosphatidylglycerol;81
10.4.5;E Diacylglycerol Supply Systems;82
10.5;IV Regulation of Lipid Biosynthesis;85
10.5.1;A Regulation of Monogalactosyldiacylglycerol Synthesis in Photosynthetic Organs;85
10.5.2;B Regulation of Monogalactosyldiacylglycerol Synthesis in Non-Photosynthetic Organs;87
10.5.3;C Regulation of Lipid Synthesis under Phosphate-Limited Conditions;88
10.6;V Concluding Remarks;90
10.7;Acknowledgements;91
10.8;References;91
11;4 Lipids in Plant Mitochondria;97
11.1;Summary;97
11.2;I Introduction;98
11.3;II Lipid Composition of Mitochondrial Membranes;99
11.4;III Lipid Biosynthetic Pathways within Mitochondria;100
11.4.1;A Synthesis of Prenyl Diphosphate and Ubiquinones;100
11.4.2;B Synthesis of Fatty Acids and Lipoic Acid;102
11.4.3;C Synthesis of Glycerolipids;104
11.4.3.1;1 De novo Biosynthesis of Cardiolipin;104
11.4.3.2;2 Remodeling of Cardiolipin;107
11.4.3.3;3 Biological Functions of Phosphatidylglycerol and Cardiolipin;107
11.5;IV Concluding Remarks;110
11.6;Acknowledgements;110
11.7;References;110
12;5 Plant Sphingolipids: Structure, Synthesis and Function;117
12.1;Summary;118
12.2;I Introduction;118
12.3;II Sphingolipid Structure;119
12.4;III Synthesis of Sphingolipids;122
12.4.1;A Ceramide Synthesis;122
12.4.1.1;1 Serine Palmitoyltransferase;122
12.4.1.2;2 3-Ketosphinganine Reductase;123
12.4.1.3;3 Very Long-Chain Fatty Acid Synthesis;126
12.4.1.4;4 Ceramide Synthases;126
12.4.2;B Synthesis of Complex Sphingolipids;128
12.4.2.1;1 Glucosylceramide Synthesis;128
12.4.2.2;2 Inositolphosphoceramide Synthesis;128
12.4.3;C Subcellular Location of Sphingolipid Synthesis;128
12.4.4;D Long-Chain Base Modification Reactions;130
12.4.4.1;1 Long-Chain Base C-4 Hydroxylation;130
12.4.4.2;2 Long-Chain Base Cap Delta8 Desaturation;131
12.4.4.3;3 Long-Chain Base Cap Delta4 Desaturation;132
12.4.5;E Fatty Acid Alpha-Hydroxylation;133
12.4.6;F Long-Chain Base-1-Phosphates: Synthesis and Turnover;133
12.4.6.1;1 Long-Chain Base Phosphorylation;134
12.4.6.2;2 Long-Chain Base-1-Phosphate Catabolism;135
12.4.7;G Ceramide Phosphorylation;136
12.5;IV Sphingolipid Turnover;136
12.5.1;A Ceramide Turnover;136
12.5.2;B Complex Sphingolipid Turnover;137
12.6;V Sphingolipid Function;137
12.6.1;A Sphingolipids as Membrane Structural Components;137
12.6.1.1;1 Distribution and Functions of Sphingolipids in Membranes;137
12.6.1.2;2 Physicochemical Behavior of Sphingolipids in Aqueous Solutions and Microdomain Formation;138
12.6.1.3;3 Sphingolipid-Rich Microdomains in Plant Membranes;140
12.6.2;B Sphingolipids as Signaling Molecules;142
12.6.2.1;1 Role of Sphingolipids in Drought Stress Signaling and Regulation of Stomatal Closure;142
12.6.2.2;2 Sphingolipid-Associated Programmed Cell Death and Autophagy;143
12.6.2.3;3 Sphingolipids in Plant–Pathogen Interactions;144
12.6.3;C Relevance of Sphingolipids to Chloroplasts and Photosynthesis;146
12.7;VI Concluding Remarks;147
12.8;Acknowledgements;147
12.9;References;147
13;6 Lipids in Algae, Lichens and Mosses;156
13.1;Summary;156
13.2;I Introduction;157
13.3;II Lipids in Algae;157
13.3.1;A Structures;158
13.3.1.1;1 Lipid Classes;158
13.3.1.1.1;Chlorophyta;158
13.3.1.1.2;Other Algal Groups;159
13.3.1.2;2 Fatty Acids;159
13.3.1.2.1;Chlorophyta;159
13.3.1.2.2;Other Algal Groups;160
13.3.1.3;3 Unusual Lipids;160
13.3.1.4;4 Oxylipins;160
13.3.2;B Effects of Abiotic Stress on the Lipid Composition;162
13.3.3;C Functions ;163
13.3.3.1;1 Lipids as Structural Components of the Photosystems;163
13.3.3.2;2 Role of Lipids in Xanthophyll Cycling;164
13.4;III Lipids in Lichens;165
13.4.1;A Biochemistry;166
13.4.1.1;1 Halogenated Lipids;166
13.4.1.2;2 Betaine Lipids;167
13.4.1.3;3 New Galactolipids;167
13.4.1.4;4 n-Alkanes;167
13.4.2;B Functions;167
13.4.2.1;1 Lipids under Dehydration;167
13.4.2.2;2 Air Pollution and Lipid Composition;168
13.4.2.3;3 Other Functions;168
13.5;IV Lipids in Mosses;168
13.5.1;A New Polyunsaturated Fatty Acids from Bryophytes;169
13.5.2;B New Enzymes for Bryophyte Lipid Metabolisms;169
13.5.3;C Lipid Metabolism under Stress;169
13.6;V Conclusions;170
13.7;Acknowledgements;171
13.8;References;171
14;7 Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii;177
14.1;Summary;177
14.1.1;I Introduction;178
14.1.2;II General Differences in Lipid Metabolism between Chlamydomonas and Seed Plants;178
14.1.3;III Membrane Glycerolipid Biosynthesis;180
14.1.3.1;A Fatty Acid Synthesis and Incorporation into Glycerolipids;180
14.1.3.2;B Chloroplast Membrane Lipids;181
14.1.3.3;C Extrachloroplastic Membrane Lipid Metabolism;184
14.1.4;IV Fatty Acid Desaturation;185
14.1.5;V Neutral Lipid Metabolism;186
14.1.6;VI Perspectives;187
14.1.7;Acknowledgements;188
14.1.8;References;188
15;8 Lipid Biosynthesis and its Regulation in Cyanobacteria;194
15.1;Summary;194
15.2;I Introduction;195
15.3;II Characteristics of Cyanobacterial Lipids;196
15.3.1;A Lipid Classes;196
15.3.2;B Fatty Acids and their Distribution at the sn-Positions of the Glycerol Backbone;198
15.4;III Biosynthesis of Lipids;198
15.4.1;A Saturated Fatty Acids;198
15.4.2;B Lipid Classes;200
15.4.2.1;1 Phosphatidic Acid;200
15.4.2.2;2 Galactolipids;201
15.4.2.3;3 Sulfoquinovosyldiacylglycerol;202
15.4.2.4;4 Phosphatidylglycerol;203
15.4.3;C Desaturation of Fatty Acids;204
15.4.3.1;1 The Fatty Acid Desaturation Reaction;204
15.4.3.2;2 Protein Components for Fatty Acid Desaturation;206
15.5;IV Regulation of Lipid Biosynthesis;207
15.5.1;A Increases in the Extent of Unsaturation of Membrane Lipids in Response to Low Temperature;207
15.5.2;B Variability in Levels of Phosphatidyl glyceroland Sulfoquinovosyldiacylglycerol under Phosphorus-Limiting Conditions;208
15.5.3;C Compensation for a Genetic Defect in Lipid Biosynthesis;209
15.6;Acknowledgements;210
15.7;References;210
16;9 Heterocyst Envelope Glycolipids;215
16.1;Summary;215
16.2;I Introduction;216
16.3;II Chemical Structure of the Heterocyst Envelope Glycolipids;216
16.4;III Physiological Role of the Heterocyst Envelope Glycolipids;217
16.5;IV Deposition of the Heterocyst Envelope Glycolipids;219
16.6;V Biosynthetic hgl Genes; Predicted Heterocyst Envelope Glycolipid Biosynthetic Pathway;220
16.7;VI Regulation of Heterocyst Envelope Glycolipid Biosynthesis;222
16.8;VII The Organization of hgl Genes Resembles that of Polyunsaturated Fatty Acid-Biosynthetic Genes and Has Been Found in Only One Cyanobacterium that Does Not Form Heterocysts;224
16.9;VIII Are Heterocyst Envelope Glycolipid Biosynthetic Domains Distinguishable from those of Other Polyketide Synthases?;226
16.10;IX Perspectives;230
16.11;Acknowledgements;234
16.12;References;234
17;10 Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex;239
17.1;Summary;240
17.2;I Introduction;240
17.2.1;A Lipids in Protein Structures;240
17.2.2;B Properties and Composition of the Thylakoid Membrane;242
17.2.3;C Oxygenic Photosynthesis;242
17.3;II Lipids Localized in the Structural Models;244
17.3.1;A General Considerations;244
17.3.2;B Photosystem II;250
17.3.2.1;1 General Structure;250
17.3.2.2;2 Lipid Positions within Photosystem II;251
17.3.3;C Cytochrome b6f Complex;254
17.3.3.1;1 General Structure;254
17.3.3.2;2 Lipid Positions in the Cytochrome b6f Complex;254
17.3.4;D Photosystem I;256
17.3.4.1;1 General Structure;256
17.3.4.2;2 Lipid Positions within Photosystem I;256
17.3.5;E Light Harvesting Complex II;258
17.3.6;F Comparison with Other Membrane Protein Complexes;260
17.3.6.1;1 Bacterial Reaction Center;260
17.3.6.2;2 ATP Synthetase;261
17.4;III Functions of Lipids;261
17.4.1;A Mediating Protein–Protein Interactions and Oligomerization;261
17.4.1.1;1 Photosystem II;261
17.4.1.2;2 Cytochrome b6f Complex;263
17.4.1.3;3 Photosystem I;264
17.4.1.4;4 Light Harvesting Complex II;264
17.4.2;B Mediating Protein–Cofactor Interactions;264
17.4.2.1;1 Chlorophylls;264
17.4.2.2;2 Carotenoids;266
17.4.2.3;3 Quinones and Phylloquinones;267
17.4.2.4;4 Influencing the Water Splitting Reaction in Photosystem II;268
17.4.3;C Providing Lipophilic Regions within the Protein Complex;268
17.4.3.1;1 Quinone Exchange in Photosystem II;268
17.4.3.2;2 Quinone Exchange in Cytochrome b6f;270
17.4.3.3;3 Quinone Exchange in the PBRC-LH1 Complex and in the Cytochrome bc1 Complex;270
17.4.3.4;4 Possible Oxygen Diffusion in Photosystem II;271
17.5;IV Conclusions and Perspectives;273
17.6;Acknowledgements;273
17.7;References;273
18;11 The Role of Phosphatidylglycerol in Photosynthesis;279
18.1;Summary;279
18.2;I Introduction;280
18.3;II Biosynthesis of Phosphatidylglycerol;281
18.3.1;A Cyanobacteria;281
18.3.2;B Higher Plants;282
18.4;III Phosphatidylglycerol in Photosyn-thetic Membranes;283
18.5;IV The Role of Phosphatidylglycerol in Photosynthesis;286
18.5.1;A Cyanobacteria;286
18.5.2;B Higher Plants;288
18.6;V The Role of Phosphatidylglycerol in Non-Photosynthetic Processes;292
18.7;Acknowledgements;294
18.8;References;294
19;12 The Role of Glycolipids in Photosynthesis;300
19.1;Summary;300
19.2;I Introduction;301
19.3;II Glycoglycerolipids in Photosynthetic Membranes;301
19.4;III Enzymes Involved in Glycoglycerolipid Biosynthesis;302
19.5;IV The Role of MGDG, and SQDG in Oxygenic Photosynthesis;305
19.5.1;A Glycoglycerolipids in Photosynthetic Complexes;306
19.5.2;B Galactolipid Mutants;308
19.5.3;C Sulfolipid Mutants;310
19.6;V The Role of Glycoglycerlipids in Anoxygenic Photosynthesis;312
19.7;VI Conclusions;313
19.8;References;313
20;13 Role of Lipids in the Dynamics of Thylakoid Membranes;318
20.1;Summary;318
20.2;I Introduction;319
20.3;II Methods for Measuring Thylakoid Membrane Dynamics;319
20.4;III Lipid and Protein Mobility in Thylakoid Membranes;322
20.5;IV Effects of Lipid Composition on Membrane Fluidity and Tolerance of Low Temperatures;326
20.6;V Importance of Lipids for Creating Diffusion Space for Proteins and Plastoquinone;327
20.7;Acknowledgements;328
20.8;References;328
21;14 Architecture of Thylakoid Membrane Networks;330
21.1;Summary;330
21.2;I Introduction;331
21.3;II Techniques in Electron Microscopy of Plant Samples;332
21.4;III Thylakoid Network Organization in Cyanobacteria and Algae;335
21.4.1;A Cyanobacterial Thylakoid Networks;335
21.4.2;B Algal Thylakoid Networks;339
21.5;IV Thylakoid Networks of Higher Plants;342
21.5.1;A Ultrastructure and Three-Dimensional Organization;342
21.5.2;B Network Remodeling during Light Acclimation;348
21.5.3;C Why Do Higher-Plant and Some Green Algal Thylakoid Networks Have Grana?;353
21.6;V Concluding Remarks;354
21.7;Acknowledgements;355
21.8;References;355
22;15 Regulatory Role of Membrane Fluidity in Gene Expression;364
22.1;Summary;364
22.2;I Introduction;365
22.3;II Modulation of Membrane Fluidity;365
22.3.1;A Measurements of Membrane Fluidity;365
22.3.2;B Effects of Changes in Temperature;366
22.3.3;C Effects of Osmotic Stress;366
22.3.4;D Effects of the Unsaturation of Fatty Acids;367
22.3.5;E Feedback Regulation of Fluidity by Desaturation of Fatty Acids;367
22.4;III Perception of Membrane Rigidification;369
22.4.1;A Cold-Inducible Genes in Cyanobacteria;369
22.4.2;B A Sensor of Cold Stress in Cyanobacteria;369
22.4.3;C Cold-Inducible Gene Expression in Plants;371
22.4.4;D Cold Sensing in Plants;371
22.4.5;E Sensing Hyperosmotic Stress;372
22.5;IV Perception of Membrane Fluidization;374
22.5.1;A Heat-Induced Gene Expression;374
22.5.2;B Gene Expression Induced by Membrane Fluidization;374
22.5.3;C Sensors of Hypoosmotic Stress;375
22.6;V Multifunctional Sensors;376
22.7;VI Conclusions and Perspectives;377
22.8;Acknowledgements;378
22.9;References;378
23;16 Lipid Trafficking in Plant Photosynthetic Cells;384
23.1;Summary;384
23.2;I Introduction;385
23.3;II Lipid Trafficking Involved in Formation of Chloroplast Lipids;386
23.3.1;A Galactolipid Synthesis in the Chloroplast Envelope;386
23.3.2;B Transfer of Diacylglycerol Backbone from Phosphatidylcholine to Galactolipids;387
23.3.3;C Trafficking of Phosphatidic Acid in the Chloroplast Envelope;388
23.3.4;D Lipid Transfer to the Thylakoids;389
23.4;III Lipid Trafficking Induced by Phosphate Deprivation;390
23.4.1;A Phosphate Deprivation-Induced Modification of Plant Cell Membranes;390
23.4.2;B Digalactosyldiacylglycerol Transfer from Chloroplasts to Mitochondria;390
23.4.3;C Relationship between Phospholipid Breakdown and Digalactosyldiacylglycerol Synthesis under Phosphate Deprivation;391
23.5;IV Molecular Mechanisms Involved in Lipid Trafficking;392
23.5.1;A Motion of Glycerolipids;392
23.5.2;B Flip-Flop Movements;393
23.5.3;C Vesicular Lipid Transfer;398
23.5.4;D Transfer of Lipids through Membrane Contact Sites;400
23.5.4.1;1 General Features;400
23.5.4.2;2 The Transfer of Phosphatidylserine at Membrane Contact Sites;401
23.5.4.3;3 The Inter-Membrane Transfer of Cardiolipin through Oligomeric Kinase Bridges;401
23.5.4.4;4 CERT, a Module Protein Involved in Inter-Membrane Lipid Transfer;401
23.6;V Conclusions;402
23.7;Acknowledgements;402
23.8;References;402
24;17 Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids;408
24.1;Summary;408
24.2;I Introduction;409
24.3;II Engineered Decreases in Unsaturation of Fatty Acids in Membrane Lipids in Synechocystis;410
24.3.1;A Targeted Mutagenesis of Fatty Acid Desaturases;410
24.3.2;B Decreased Unsaturation of Fatty Acids Stimulates Photoinhibition at Low Temperature;411
24.3.3;C Decreased Unsaturation of Fatty Acids Stimulates Irreversible Photoinhibition;412
24.3.4;D Decreased Unsaturation of Fatty Acids Enhances Sensitivity to Salt Stress;412
24.4;III Engineered Increases in Unsaturation of Fatty Acids in Membrane Lipids in Synechococcus;414
24.4.1;A Transgenes for Fatty Acid Desaturases;414
24.4.2;B Increased Unsaturation of Fatty Acids Mitigates Photoinhibition at Low Temperature;414
24.4.3;C Increased Unsaturation of Fatty Acids Enhances Tolerance to Salt Stress;415
24.5;IV Modulation of Unsaturation of Fatty Acids in Membrane Lipids in Higher Plants;415
24.5.1;A Mutation of Fatty Acid Desaturases and Changes in Lipid Composition;415
24.5.2;B Changes in Unsaturation of Fatty Acids by Transgenes for Acyltransferases;417
24.5.3;C Increases in Unsaturation of Fatty Acids due to Transgenes for Fatty Acid Desaturases;418
24.6;V Conclusions;419
24.7;Acknowledgements;420
24.8;References;420
25;18 Oxidation of Membrane Lipids and Functions of Oxylipins;424
25.1;Summary;424
25.2;I Introduction;425
25.3;II Chemical and Enzymatic Pathways of Oxylipin Synthesis;425
25.3.1;A Polyunsaturated Fatty Acids Are Sensitive to Oxidation;425
25.3.2;B Production and Role of Reactive Electrophile Species;426
25.3.3;C Enzymatic Pathways of Oxylipin Synthesis;427
25.3.4;D An Evolutionary Perspective;428
25.4;III The Synthesis and Function of Jasmonate in Higher Plants;428
25.4.1;A An Overview of Defense and Other Functions in Plants;428
25.4.2;B The Biochemistry and Cell Biology of Jasmonate Synthesis;429
25.4.2.1;1 Chloroplast and Peroxisome Enzymes of Jasmonate Synthesis;429
25.4.2.2;2 Plants Synthesize Numerous Jasmonate Derivatives;429
25.4.3;C Jasmonate Is the Defense Hormone;431
25.4.3.1;1 An Essential Role for Jasmonate in Insect Defense;431
25.4.3.2;2 Jasmonate Is a Translocated Signal;432
25.4.3.3;3 Jasmonate Also Acts in Defense against Microbial Pathogens;433
25.4.4;D Discovery of the JAZ Repressors and the Mechanism of Jasmonate Signaling;433
25.4.4.1;1 Eight JAZ Genes Induced by Jasmonate Treatment;433
25.4.4.2;2 A Modified JAZ Protein Blocks Jasmonate Signaling;434
25.4.4.3;3 Jasmonoyl-Isoleucine Promotes JAZ-COI1 Interaction;435
25.4.4.4;4 Alternative Models of Jasmonate Signaling;435
25.5;IV Conclusions and Perspectives;436
25.6;Acknowledgements;436
25.7;References;436
26;19 Biosynthesis and Biotechnology of Seed Lipids Including Sterols, Carotenoids and Tocochromanols;441
26.1;Summary;441
26.1.1;I Introduction;442
26.1.1.1;A Seed Lipids and their Biosynthetic Origin;442
26.1.1.2;B Lipid Function;442
26.1.1.3;C Objectives and Outline;442
26.1.2;II Sterols;443
26.1.3;III Carotenoids;446
26.1.4;IV Tocochromanols;452
26.1.5;V Acyl Lipids;456
26.1.5.1;A Carbon Supply for Fatty Acid Biosynthesis in Seeds;456
26.1.5.1.1;1 Precursors of Fatty Acid Biosynthesis in Photosynthetic Leaf Tissues;457
26.1.5.1.2;2 Gene Expression and Activity of Enzymes Involved in Carbon Supply for Fatty Acid Biosynthesis in Developing Seed;458
26.1.5.1.3;3 Sources of Carbon Energy and Reductant for Fatty Acid Biosynthesis in the Developing Seed;459
26.1.5.2;B Fatty Acid and Glycerol Lipid Biosynthesis in Seeds;462
26.1.5.3;C Developmental Programs of Seed Maturation and their Relationship to Lipid Biosynthesis;466
26.1.5.4;D Approaches to Increased Oil Accumulation in Seed;468
26.1.6;References;470
27;20 Advanced Mass Spectrometry Methods for Analysis of Lipids from Photosynthetic Organisms;479
27.1;Summary;479
27.2;I Introduction;480
27.3;II Lipid Extraction;481
27.4;III Chromatographic Methods for Lipid-Class Separation;481
27.4.1;A Thin-Layer Chromatography;482
27.4.2;B Solid-Phase Extraction;483
27.4.3;C High-Performance Liquid Chromatography;483
27.4.4;D Detection Methods for Lipids in High-Performance Liquid-Chromatographic Systems;483
27.5;IV Mass Spectrometry-Based Lipid Analysis;485
27.5.1;A Direct Infusion-Based Lipid Profiling;485
27.5.2;B Hyphenated Technologies for Lipid Analysis;488
27.5.2.1;1 High-Performance Liquid Chromatography/ Electrospray Ionization Mass Spectrometry;488
27.5.2.2;2 High-Performance Liquid Chromatography/ Atmospheric Pressure Chemical Ionization and High-Performance Liquid Chromatography/ Atmospheric Pressure Photoionization;490
27.5.2.3;3 Gas Chromatography–Mass Spectrometry;491
27.6;V Qualification and Quantification;491
27.7;VI Outlook;492
27.8;References;493
28;Index;496




