Wachinger / Paniagua / Egger | Shape in Medical Imaging | Buch | 978-3-031-75290-2 | sack.de

Buch, Englisch, 226 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Lecture Notes in Computer Science

Wachinger / Paniagua / Egger

Shape in Medical Imaging

International Workshop, ShapeMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings
2024
ISBN: 978-3-031-75290-2
Verlag: Springer Nature Switzerland

International Workshop, ShapeMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings

Buch, Englisch, 226 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-75290-2
Verlag: Springer Nature Switzerland


This book constitutes the proceedings of the International Workshop on Shape in Medical Imaging, ShapeMI 2024, which took place in Marrakesh, Morocco, on October 6, 2024, held in conjunction with MICCAI 2024.

The 16 full papers included in this book were carefully reviewed and selected from 24 submissions.  They focus on shape and spectral analysis, geometric learning and modeling algorithms, and application-driven research.

Wachinger / Paniagua / Egger Shape in Medical Imaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images.- PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model.- Deformable vertebra 3D/2D registration from biplanar X-rays using particle-based shape modelling.- Deep Combined Computing of Vascular Images with Tubular Shape-Guided Convolution.- Implicitly Explicit: Segmenting Vertebrae with Deep Implicit Statistical Shape Models.- 3D Body Twin: Improving Human Gait Visualizations Using Personalized Avatars.- Robust Curve Detection in Volumetric Medical Imaging via Attraction Field.- A Critical Comparison Between Template-Based and Architecture-Reused Deep Learning Methods for Generic 3D Landmarking of Anatomical Structures.- Adaptive Bi-ventricle Surface Reconstruction from Cardiovascular Imaging.- Application of Deep Statistical Shape Modeling for Analysis of Obstructive Sleep Apnea from MRI Data.- Leveraging Expert Knowledge for Real-time Online Adaptation of Intraoperative Liver Registration.- MASSM: An End-to-End Deep Learning Framework for Multi-Anatomy Statistical Shape Modeling Directly From Images.- LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation.- Enhancing Multimodal Image-Based Classification of Alzheimer’s Disease with Surface Information.- Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations.- Towards Point Cloud-Based Medical Image Registration for Dynamic 4D-CT Imaging.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.