Vujicic / Sanderson | Linear Algebra Thoroughly Explained | Buch | 978-3-642-09410-1 | sack.de

Buch, Englisch, 288 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 458 g

Vujicic / Sanderson

Linear Algebra Thoroughly Explained


Softcover Nachdruck of hardcover 1. Auflage 2008
ISBN: 978-3-642-09410-1
Verlag: Springer

Buch, Englisch, 288 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 458 g

ISBN: 978-3-642-09410-1
Verlag: Springer


Milan Vujicic was Professor of Theoretical Physics at the University of Belgrade and the book is based on lectures he gave there to both undergraduate and postgraduate students over a period of several decades. He also lectured on the applications of linear algebra in particle physics at the University of Adelaide and, after retirement, taught the subject at the most basic level to Teaching Diploma students at the University of Malta. It was his success in this most recent endeavour that inspired him to write this book which sets out to explain Linear Algebra from its fundamentals to the most advanced level where he, himself, used it throughout his career to solve problems involving linear and anti-linear correlations and symmetries in quantum mechanical applications.

Linear Algebra is one of the most important topics in mathematics, of interest in its own right to mathematicians, but also as an enormously powerful tool in the applied sciences, particularly in physics and engineering. A special feature of this book is its didactical approach, with a myriad of thoroughly worked examples and excellent illustrations, which allows the reader to approach the subject from any level and to proceed to that of the most advanced applications. Throughout, the subject is taught with painstaking care.

Vujicic / Sanderson Linear Algebra Thoroughly Explained jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Vector Spaces.- Linear Mappings and Linear Systems.- Inner-Product Vector Spaces (Euclidean and Unitary Spaces).- Dual Spaces and the Change of Basis.- The Eigen Problem or Diagonal Form of Representing Matrices.- Tensor Product of Unitary Spaces.- The Dirac Notation in Quantum Mechanics: Dualism between Unitary Spaces (Sect. 4.1) and Isodualism between Their Superspaces (Sect. 4.7).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.