Vrain / Lachiche | Inductive Logic Programming | Buch | 978-3-319-78089-4 | sack.de

Buch, Englisch, 185 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Lecture Notes in Artificial Intelligence

Vrain / Lachiche

Inductive Logic Programming

27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers
1. Auflage 2018
ISBN: 978-3-319-78089-4
Verlag: Springer International Publishing

27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers

Buch, Englisch, 185 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-319-78089-4
Verlag: Springer International Publishing


This book constitutes the thoroughly refereed post-conference proceedings of the 27th International Conference on Inductive Logic Programming, ILP 2017, held in Orléans, France, in September 2017.
The 12 full papers presented were carefully reviewed and selected from numerous submissions.
Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

Vrain / Lachiche Inductive Logic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Relational Affordance Learning for Task-dependent Robot Grasping.- Positive and Unlabeled Relational Classification Through Label Frequency Estimation.- On Applying Probabilistic Logic Programming to Breast Cancer Data.- Logical Vision: One-Shot Meta-Interpretive Learning from Real Images.- Demystifying Relational Latent Representations.- Parallel Online Learning of Event Definitions.- Relational Restricted Boltzmann Machines: A Probabilistic Logic Learning Approach.- Parallel Inductive Logic Programming System for Super-linear Speedup.- Inductive Learning from State Transitions over Continuous Domains.- Stacked Structure Learning for Lifted Relational Neural Networks.- Pruning Hypothesis Spaces Using Learned Domain Theories.- An Investigation into the Role of Domain-knowledge on the Use of Embeddings.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.