Voigt | Synthetic Biology, Part A | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 497, 714 Seiten, Web PDF

Reihe: Methods in Enzymology

Voigt Synthetic Biology, Part A

Methods for Part/Device Characterization and Chassis Engineering
1. Auflage 2011
ISBN: 978-0-12-385076-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Methods for Part/Device Characterization and Chassis Engineering

E-Book, Englisch, Band Volume 497, 714 Seiten, Web PDF

Reihe: Methods in Enzymology

ISBN: 978-0-12-385076-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Synthetic biology encompasses a variety of different approaches, methodologies and disciplines, and many different definitions exist. This Volume of Methods in Enzymology has been split into 2 Parts and covers topics such as Measuring and Engineering Central Dogma Processes, Mathematical and Computational Methods and Next-Generation DNA Assembly and Manipulation. - Encompasses a variety of different approaches, methodologies and disciplines - Split into 2 parts and covers topics such as measuring and engineering central dogma processes, mathematical and computational methods and next-generation DNA assembly and manipulation

Voigt Synthetic Biology, Part A jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front cover
;1
2;Synthetic Biology, Part A: Methods for Part/Device Characterization and Chassis Engineering;4
3;Copyright;5
4;Contents;6
5;Contributors;14
6;Preface;22
7;Methods in Enzymology;24
8;Section One: Measuring and Engineering Central Dogma Processes;56
8.1;Chapter 1: Sequence-Specificity and Energy Landscapes of DNA-Binding Molecules;58
8.1.1;1. Introduction;59
8.1.2;2. Array-Based Cognate Sequence Identification;61
8.1.3;3. Solution-Based Cognate Sequence Identification;68
8.1.4;4. Data Analysis and Visualization of Specificity, Binding Energy, and Genomic-Association Landscapes;73
8.1.5;References;82
8.2;Chapter 2: Promoter Reliability in Modular Transcriptional Networks;86
8.2.1;1. Results;88
8.2.2;2. Conclusion;99
8.2.3;3. Methods;100
8.2.4;Acknowledgments;102
8.2.5;References;102
8.3;Chapter 3: The Analysis of ChIP-Seq Data;106
8.3.1;1. Introduction;107
8.3.2;2. Planning of ChIP-Seq Experiments;108
8.3.3;3. Processing and Analyzing ChIP-Seq Datasets;113
8.3.4;4. Discussion;123
8.3.5;Acknowledgments;125
8.3.6;References;126
8.4;Chapter 4: Using DNA Microarrays to Assay Part Function;130
8.4.1;1. Introduction;131
8.4.2;2. Different Microarray Platforms;132
8.4.3;3. Experimental Design;136
8.4.4;4. Experimental Variation;137
8.4.5;5. Sample Preparation;140
8.4.6;6. Microarray Preprocessing;148
8.4.7;7. Clustering;154
8.4.8;8. Differential Expression Analysis;159
8.4.9;9. Data Analysis: Understanding the Perturbation;161
8.4.10;10. Closing Remarks;163
8.4.11;References;164
8.5;Chapter 5: Orthogonal Gene Expression in Escherichia coli;170
8.5.1;1. Introduction;171
8.5.2;2. High-Throughput Screening for Orthogonal T7 Promoter O-rbs System;174
8.5.3;3. Integration of Orthogonal Pairs to Synthesize Transcription-Translation FFL;177
8.5.4;4. Engineering the FFL Delay via the Discovery of a Minimal O-rRNA;178
8.5.5;5. Discussion;181
8.5.6;6. Material and Methods;184
8.5.7;Acknowledgments;187
8.5.8;References;187
8.6;Chapter 6: Directed Evolution of Promoters and Tandem Gene Arrays for Customizing RNA Synthesis Rates and Regulation;190
8.6.1;1. Introduction;191
8.6.2;2. Promoter Modification by Error-Prone PCR;193
8.6.3;3. Generating Stable Tandem Gene Arrays for Controlling RNA Synthesis Rate;205
8.6.4;4. Concluding Remarks;208
8.6.5;References;209
9;Section Two: Device and System Design, Optimization, and Debugging;212
9.1;Chapter 7: Design and Connection of Robust Genetic Circuits;214
9.1.1;1. Introduction;215
9.1.2;2. Sources of Failure;216
9.1.3;3. Robustness Principles and Examples in Natural Systems;218
9.1.4;4. Methods for Obtaining Robust Synthetic Circuits;220
9.1.5;5. Robustness Trade-Offs;236
9.1.6;6. Conclusion;237
9.1.7;References;237
9.2;Chapter 8: Engineering RNAi Circuits;242
9.2.1;1. Introduction;243
9.2.2;2. Constructing a Computational Logic Core for the RNAi-Based DNF Circuit;244
9.2.3;3. Constructing a Computational Logic Core for the RNAi-Based CNF Circuit;255
9.2.4;4. Transition from siRNA to miRNA;257
9.2.5;Acknowledgments;259
9.2.6;References;259
9.3;Chapter 9: From SELEX to Cell...;262
9.3.1;1. Introduction;262
9.3.2;2. General Precautions;263
9.3.3;3. In Vitro Selection;263
9.3.4;4. In Vivo Selection;267
9.3.5;References;274
9.4;Chapter 10: Using Noisy Gene Expression Mediated by Engineered Adenovirus to Probe Signaling Dynamics in Mammalian Cells;276
9.4.1;1. Introduction;277
9.4.2;2. Design and Construction;279
9.4.3;3. Measurement;285
9.4.4;4. Broader Applications;289
9.4.5;References;289
9.5;Chapter 11: De novo Design and Construction of an Inducible Gene Expression System in Mammalian Cells;294
9.5.1;1. Introduction;295
9.5.2;2. Selection of a Conditional DNA-Binding Protein;298
9.5.3;3. Establishment of the Inducible Expression System;299
9.5.4;4. Optimization of the Expression System;303
9.5.5;5. Summary;305
9.5.6;Acknowledgments;306
9.5.7;References;306
9.6;Chapter 12: BioBuilding...;310
9.6.1;1. Introduction;311
9.6.2;2. Eau d'coli;312
9.6.3;3. "Eau That Smell" Teaching Lab Using the MIT iGEM Team's Eau d'coli Cells;314
9.6.4;4. Teaching Labs Modified for Resource-Stretched Settings;322
9.6.5;5. Summary;324
9.6.6;Acknowledgments;325
9.6.7;References;325
10;Section Three: Device Measurement, Optimization, and Debugging;328
10.1;Chapter 13: Use of Fluorescence Microscopy to Analyze Genetic Circuit Dynamics;330
10.1.1;1. Fluorescent Reporters;331
10.1.2;2. Constructing and Using Genetic Fluorescent Reporters;332
10.1.3;3. Fluorescent Time-Lapse Microscopy;336
10.1.4;4. Measuring and Interpreting Dynamics;339
10.1.5;5. Applications for Measurement of Circuit Dynamics;341
10.1.6;References;347
10.2;Chapter 14: Microfluidics for Synthetic Biology;350
10.2.1;1. Part I: Introduction;351
10.2.2;2. Part II: Fabrication;393
10.2.3;3. Part III: Experiments;413
10.2.4;Appendix;424
10.2.5;Acknowledgments;426
10.2.6;References;426
10.3;Chapter 15: Plate-Based Assays for Light-Regulated Gene Expression Systems;428
10.3.1;1. Bacterial Photography Protocol;429
10.3.2;2. Bacterial Edge Detection Protocol;434
10.3.3;3. Setting up a Projector-Incubator;436
10.3.4;4. The beta-Galactosidase/S-Gal Reporter System;439
10.3.5;5. Quantifying Signal Intensity on the Plates;440
10.3.6;6. Microscopic Imaging of Agarose Slabs;440
10.3.7;7. Properties of Relevant Strains;441
10.3.8;8. Properties of Relevant Plasmids;442
10.3.9;References;445
10.4;Chapter 16: Spatiotemporal Control of Small GTPases with Light Using the LOV Domain;448
10.4.1;1. Introduction;449
10.4.2;2. The LOV Domain as a Tool for Protein Caging;450
10.4.3;3. Design and Structure Optimization of PA-Rac;450
10.4.4;4. Activation of PA-Rac in Living Cells;452
10.4.5;5. Application of PA-Rac in Drosophila Ovarian Border Cell Migration;455
10.4.6;References;462
10.5;Chapter 17: Light Control of Plasma Membrane Recruitment Using the Phy-PIF System;464
10.5.1;1. Introduction;465
10.5.2;2. Light-Controlled Phy-PIF Interaction;466
10.5.3;3. Genetic Constructs Encoding Phy and PIF Components;467
10.5.4;4. Purification of PCB from Spirulina;470
10.5.5;5. Cell Culture Preparation for Phy-PIF Translocation;473
10.5.6;6. Imaging PIF Translocation Using Spinning Disk Confocal Microscopy;474
10.5.7;Acknowledgments;476
10.5.8;References;476
10.6;Chapter 18: Synthetic Physiology...;480
10.6.1;1. Introduction;481
10.6.2;2. Molecular Design and Construction;484
10.6.3;3. Transduction of Microbial Opsins into Cells for Heterologous Expression;487
10.6.4;4. Physiological Assays;490
10.6.5;5. Conclusion;493
10.6.6;Acknowledgments;494
10.6.7;References;494
11;Section Four: Devices for Metabolic Engineering;500
11.1;Chapter 19: Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding;502
11.1.1;1. Introduction;503
11.1.2;2. Method-How to Build Modular Protein Scaffolded Systems for Metabolic Engineering Applications;509
11.1.3;3. Systems that May Benefit from Scaffolding;520
11.1.4;4. Concluding Remarks;520
11.1.5;Acknowledgments;521
11.1.6;References;521
11.2;Chapter 20: A Synthetic Iterative Pathway for Ketoacid Elongation;524
11.2.1;1. Introduction;525
11.2.2;2. Natural Pathways Involving Ketoacid Chain Elongations Catalyzed by the LeuABCD-Dependent Mechanisms;526
11.2.3;3. IPMS and Similar Enzymes;528
11.2.4;4. Expansion to Nonnatural Pathways;530
11.2.5;5. Transfer of Citramalate Pathway to E. coli for Ketoacid Chain Elongation;533
11.2.6;6. Conclusion Remarks;535
11.2.7;References;535
12;Section Five: Expanding Chassis;538
12.1;Chapter 21: Synthetic Biology in Streptomyces Bacteria;540
12.1.1;1. Synthetic Biology for Novel Compound Discovery in Streptomyces;541
12.1.2;2. Practical Considerations for Synthetic Biology in Streptomyces;543
12.1.3;3. Iterative Reengineering of Secondary Metabolite Gene Clusters;544
12.1.4;4. The Molecular Toolbox for Streptomyces Synthetic Biology;546
12.1.5;5. Transcriptional Control;547
12.1.6;6. Translational Control;549
12.1.7;7. Vectors;549
12.1.8;Acknowledgments;552
12.1.9;References;552
12.2;Chapter 22: Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio;558
12.2.1;1. Introduction;559
12.2.2;2. Chromosomal Modifications Through Homologous Recombination;560
12.2.3;3. Culturing Conditions and Antibiotic Selection;562
12.2.4;4. DNA Transformation;565
12.2.5;5. Screening Colonies for Proper Integration;568
12.2.6;6. Complementing Gene Deletions;569
12.2.7;7 Concluding Remarks;570
12.2.8;Acknowledgments;571
12.2.9;References;571
12.3;Chapter 23: Modification of the Genome of Rhodobacter sphaeroides and Construction of Synthetic Operons;574
12.3.1;1. Introduction;575
12.3.2;2. Gene Disruption and Deletion;577
12.3.3;3. Construction of Synthetic Operons;582
12.3.4;4. Future Directions;587
12.3.5;References;588
12.4;Chapter 24: Synthetic Biology in Cyanobacteria...;594
12.4.1;1. Introduction;595
12.4.2;2. Cyanobacterial Chassis;597
12.4.3;3. Biological Parts in Cyanobacteria;599
12.4.4;4. Genetic Engineering of Cyanobacteria;605
12.4.5;5. Molecular Analysis of Cyanobacteria;617
12.4.6;6. Conclusion and Outlook;626
12.4.7;Acknowledgments;627
12.4.8;References;627
12.5;Chapter 25: Developing a Synthetic Signal Transduction System in Plants;636
12.5.1;1. Introduction;637
12.5.2;2. Foundation for Developing a Molecular Testing Platform for HK Systems;641
12.5.3;3. Technical Considerations in Developing a Eukaryotic Synthetic Signal Transduction System Based on Bacterial TCS Components.;644
12.5.4;4. A Partial Synthetic Signal Transduction System Using Cytokinin Input;647
12.5.5;5. A Eukaryotic Synthetic Signal Transduction Pathway;648
12.5.6;6. Conclusions;650
12.5.7;7. Protocols;652
12.5.8;Acknowledgments;654
12.5.9;References;654
12.6;Chapter 26: Lentiviral Vectors to Study Stochastic Noise in Gene Expression;658
12.6.1;1. Introduction;659
12.6.2;2. The Lentiviral-Vector Approach;660
12.6.3;3. Production of Lentiviral Vectors and Transduced Cell Lines;664
12.6.4;4. Procedure for Constructing a CV2 Versus Mean Plot;671
12.6.5;5. Inferring Promoter Regulatory Architecture from CV2 Versus Mean Analysis;671
12.6.6;6. Conclusion;675
12.6.7;Acknowledgments;675
12.6.8;References;675
13;Author Index;678
14;Subject Index;706
15;Colour Plate;718



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.