Buch, Deutsch, 230 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 316 g
Mathematik Primär- und Sekundarstufe
Buch, Deutsch, 230 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 316 g
Reihe: Mathematik Primarstufe und Sekundarstufe I + II
ISBN: 978-3-8274-1740-4
Verlag: Spektrum Akademischer Verlag
Die Analysis ist und bleibt der harte Kern der Oberstufenmathematik. Das Buch bricht eine Lanze für einen verstehensorientierten Analysisunterricht. Nach Klärung der fachdidaktischen Grundposition werden alle etablierten Themenfelder gründlich beleuchtet: Folgen, Ableitung und Integral, Kurvendiskussion und Extremwertprobleme. Angesprochen sind in erster Linie die angehenden und praktizierenden Lehrerinnen und Lehrer.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Grundpositionen 1.1 Eine öffentliche Diskussion 1.2 Ein Bezugsrahmen 1.3 Zurück zum Analysisunterricht 1.4 Ausblick Aufgaben 2 Zur Rolle der Folgen 2.1 Wo gehören die Folgen hin? 2.1.1 Diskrete Modellierung als rekursiver Prozess 2.1.2 Von der Iteration zum Konvergenzbegriff 2.2 Eine Frage mit Tiefgang: Ist 0,9999. = 1? 2.3 Vollständigkeit und die Folgen 2.3.1 Von Q nach R 2.3.2 Intervallschachtelungen 2.3.3 Keine "richtige" Analysis auf Q! 2.4 Zusammenfassung Aufgaben 3 Der Ableitungsbegriff 3.1 ein Blick in die Praxis 3.1.1 Schwierigkeiten mit einem klassischen Zugang 3.1.2 Konstruktiver Ausblick 3.2 Die Ableitung als lokale Änderungsrate 3.2.1 Grundverständnis 3.2.2 Ein Modellierungsbeispiel 3.2.3 Eine historische Quelle 3.3 Der Aspekt der lokalen Linearisierung 3.3.1 Grundverständnis 3.3.2 Vom Nutzen der lokalen Linearisierung 3.3.3 Verallgemeinerungsfähigkeit 3.3.4 Eine historische Quelle 3.4 Zusammenfassung Aufgaben 4 Der Integralbegriff 4.1 Ein Blick in die Praxis 4.2 Integrieren heißt Rekonstruieren 4.2.1 Grundverständnis 4.2.2 Von der Berandung zur Integralfunktion 4.2.3 Der Hauptsatz 4.2.4 Zusammenschau 4.3 Integrieren heißt Mitteln 4.3.1 Grundverständnis 4.3.2 Der Mittelwertsatz 4.4 Analytische Präzisierung 4.4.1 Eine Lücke wird geschlossen 4.4.2 Vom Nutzen der Produktsummen 4.4.3 Ein neuer Begriff entsteht 4.5 Zusammenfassung Aufgaben 5 Kurvendiskussion: Ja - aber wie? 5.1 Ein Blick in die Praxis 5.2 Fachliche Orientierung 5.2.1 Das Monotoniekriterium 5.2.2 Lokale Extrema 5.2.3 Wendepunkte 5.2.4 Übergreifender Gesichtspunkt 5.3 Wege der Öffnung 5.3.1 Erste Schritte 5.3.2 Echte Anwendungen 5.3.3 Echte Kurven 5.4 Zusammenfassung Aufgaben 6 Extremwertprobleme 6.1 Ein Blick in die Praxis 6.1.1 Anmerkungen zum Standardkalkül 6.1.2 Wege der Öffnung 6.2 Belebende Aspekte 6.2.1 Kraft elementarer Methoden 6.2.2 Einbeziehung historischer Momente 6.2.3 Aktivitäten zur Modellbildung 6.2.4 Das Medium Computer 6.3 Zusammenfassung Aufgaben Exkurs: Analysisunterricht hat Geschichte! Literatur Stichwörter