Buch, Englisch, 509 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g
Linear, Logistic, Survival, and Repeated Measures Models
Buch, Englisch, 509 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g
Reihe: Statistics for Biology and Health
ISBN: 978-1-4899-9854-5
Verlag: Springer
This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes.
Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way.
The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
Introduction.- Exploratory and Descriptive Methods.- Basic Statistical Methods.- Linear Regression.- Logistic Regression.- Survival Analysis.- Repeated Measures Analysis.- Generalized Linear Models.- Strengthening Casual Inference.- Predictor Selection.- Complex Surveys.- Summary.