Vince | Geometry for Computer Graphics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 342 Seiten

Vince Geometry for Computer Graphics

Formulae, Examples and Proofs
1. Auflage 2006
ISBN: 978-1-84628-116-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Formulae, Examples and Proofs

E-Book, Englisch, 342 Seiten

ISBN: 978-1-84628-116-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



A complete overview of the geometry associated with computer graphics that provides everything a reader needs to understand the topic. Includes a summary hundreds of formulae used to solve 2D and 3D geometric problems; worked examples; proofs; mathematical strategies for solving geometric problems; a glossary of terms used in geometry.

Vince Geometry for Computer Graphics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;9
2;Preface;6
3;1 Geometry;21
3.1;1.1 Lines, angles and trigonometry;24
3.1.1;1.1.1 Points and straight lines;24
3.1.2;1.1.2 Angles;24
3.1.3;1.1.3 Trigonometry;25
3.2;1.2 Circles;29
3.2.1;1.2.1 Properties of circles;29
3.2.2;1.2.2 Ellipses;30
3.3;1.3 Triangles;31
3.3.1;1.3.1 Types of triangle;31
3.3.2;1.3.2 Similar triangles;31
3.3.3;1.3.3 Congruent triangles;32
3.3.4;1.3.4 Theorem of Pythagoras;32
3.3.5;1.3.5 Internal and external angles;33
3.3.6;1.3.6 Sine, cosine and tangent rules;33
3.3.7;1.3.7 Area of a triangle;33
3.3.8;1.3.8 Inscribed and circumscribed circles;34
3.3.9;1.3.9 Centroid of a triangle;35
3.3.10;1.3.10 Spherical trigonometry;35
3.4;1.4 Quadrilaterals;36
3.5;1.5 Polygons;39
3.5.1;1.5.1 Internal and external angles of a polygon;39
3.5.2;1.5.2 Alternate internal angles of a cyclic polygon;39
3.5.3;1.5.3 Area of a regular polygon;39
3.6;1.6 Three-dimensional objects;41
3.6.1;1.6.1 Prisms;41
3.6.2;1.6.2 Pyramids;41
3.6.3;1.6.3 Cylinders;42
3.6.4;1.6.4 Cones;42
3.6.5;1.6.5 Spheres;42
3.6.6;1.6.6 Tori;43
3.6.7;1.6.7 Platonic solids;43
3.7;1.7 Coordinate systems;46
3.7.1;1.7.1 Cartesian coordinates in R2;46
3.7.2;1.7.2 Cartesian coordinates in R3;46
3.7.3;1.7.3 Polar coordinates;47
3.7.4;1.7.4 Cylindrical coordinates;47
3.7.5;1.7.5 Spherical coordinates;48
3.8;1.8 Vectors;49
3.8.1;1.8.1 Vector between two points;49
3.8.2;1.8.2 Scaling a vector;49
3.8.3;1.8.3 Reversing a vector;49
3.8.4;1.8.4 Unit Cartesian vectors;49
3.8.5;1.8.5 Algebraic notation for a vector;49
3.8.6;1.8.6 Magnitude of a vector;50
3.8.7;1.8.7 Normalizing a vector to a unit length;50
3.8.8;1.8.8 Vector addition/subtraction;50
3.8.9;1.8.9 Compound scalar multiplication;50
3.8.10;1.8.10 Position vector;50
3.8.11;1.8.11 Scalar (dot) product;50
3.8.12;1.8.12 Angle between two vectors;51
3.8.13;1.8.13 Vector (cross) product;51
3.8.14;1.8.14 The commutative law does not hold: axb= --bxa;51
3.8.15;1.8.15 Scalar triple product;51
3.8.16;1.8.16 Vector triple product;52
3.8.17;1.8.17 Vector normal to a triangle;52
3.8.18;1.8.18 Area of a triangle;52
3.9;1.9 Quaternions;53
3.9.1;1.9.1 Definition of a quaternion;53
3.9.2;1.9.2 Equal quaternions;53
3.9.3;1.9.3 Quaternion addition and subtraction;53
3.9.4;1.9.4 Quaternion multiplication;53
3.9.5;1.9.5 Magnitude of a quaternion;54
3.9.6;1.9.6 The inverse quaternion;54
3.9.7;1.9.7 Rotating a vector;54
3.9.8;1.9.8 Quaternion as a matrix;54
3.10;1.10 Transformations;55
3.10.1;1.10.1 Scaling relative to the origin in R2;55
3.10.2;1.10.2 Scaling relative to a point in R2;55
3.10.3;1.10.3 Translation in R2;55
3.10.4;1.10.4 Rotation about the origin in R2;55
3.10.5;1.10.5 Rotation about a point in R2;56
3.10.6;1.10.6 Shearing along the x-axis in R2;56
3.10.7;1.10.7 Shearing along the y-axis in R2;56
3.10.8;1.10.8 Reflection about the x-axis in R2;56
3.10.9;1.10.9 Reflection about the y-axis in R2;56
3.10.10;1.10.10 Reflection about a line parallel with the x-axis in R2;57
3.10.11;1.10.11 Reflection about a line parallel with the y-axis in R2;57
3.10.12;1.10.12 Translated change of axes in R2;57
3.10.13;1.10.13 Rotated change of axes in R2;57
3.10.14;1.10.14 The identity matrix in R2;57
3.10.15;1.10.15 Scaling relative to the origin in R3;58
3.10.16;1.10.16 Scaling relative to a point in R3;58
3.10.17;1.10.17 Translation in R3;58
3.10.18;1.10.18 Rotation about the x-axis in R3;58
3.10.19;1.10.19 Rotation about the y-axis in R3;59
3.10.20;1.10.20 Rotation about the z-axis in R3;59
3.10.21;1.10.21 Rotation about an arbitrary axis in R3;59
3.10.22;1.10.22 Reflection about the yz-plane in R3;59
3.10.23;1.10.23 Reflection about the zx-plane in R3;59
3.10.24;1.10.24 Reflection about the xy-plane in R3;60
3.10.25;1.10.25 Reflection about a plane parallel with the yz-plane in R3;60
3.10.26;1.10.26 Reflection about a plane parallel with the zx-plane in R3;60
3.10.27;1.10.27 Reflection about a plane parallel with the xy-plane in R3;60
3.10.28;1.10.28 Translated change of axes in R3;60
3.10.29;1.10.29 Rotated change of axes in R3;61
3.10.30;1.10.30 The identity matrix in R3;61
3.11;1.11 Two-dimensional straight lines;62
3.11.1;1.11.1 Normal form of the straight line equation;62
3.11.2;1.11.2 General form of the straight line equation;62
3.11.3;1.11.3 Hessian normal form of the straight line equation;62
3.11.4;1.11.4 Parametric form of the straight line equation;62
3.11.5;1.11.5 Cartesian form of the straight line equation;63
3.11.6;1.11.6 Straight line equation from two points;63
3.11.7;1.11.7 Point of intersection of two straight lines;64
3.11.8;1.11.8 Angle between two straight lines;65
3.11.9;1.11.9 Three points lie on a straight line;65
3.11.10;1.11.10 Parallel and perpendicular straight lines;66
3.11.11;1.11.11 Position and distance of a point on a line perpendicular to the origin;66
3.11.12;1.11.12 Position and distance of the nearest point on a line to a point;67
3.11.13;1.11.13 Position of a point reflected in a line;67
3.11.14;1.11.14 Normal to a line through a point;68
3.11.15;1.11.15 Line equidistant from two points;68
3.11.16;1.11.16 Two-dimensional line segment;69
3.12;1.12 Lines and circles;71
3.12.1;1.12.1 Line intersecting a circle;71
3.12.2;1.12.2 Touching and intersecting circles;71
3.13;1.13 Second degree curves;73
3.13.1;1.13.1 Circle;73
3.13.2;1.13.2 Ellipse;73
3.13.3;1.13.3 Parabola;74
3.13.4;1.13.4 Hyperbola;74
3.14;1.14 Three-dimensional straight lines;75
3.14.1;1.14.1 Straight line equation from two points;75
3.14.2;1.14.2 Intersection of two straight lines;75
3.14.3;1.14.3 The angle between two straight lines;75
3.14.4;1.14.4 Three points lie on a straight line;75
3.14.5;1.14.5 Parallel and perpendicular straight lines;76
3.14.6;1.14.6 Position and distance of a point on a line perpendicular to the origin;76
3.14.7;1.14.7 Position and distance of the nearest point on a line to a point;76
3.14.8;1.14.8 Shortest distance between two skew lines;76
3.14.9;1.14.9 Position of a point reflected in a line;77
3.14.10;1.14.10 Normal to a line through a point;77
3.15;1.15 Planes;78
3.15.1;1.15.1 Cartesian form of the plane equation;78
3.15.2;1.15.2 General form of the plane equation;78
3.15.3;1.15.3 Hessian normal form of the plane equation;78
3.15.4;1.15.4 Parametric form of the plane equation;79
3.15.5;1.15.5 Converting from the parametric form to the general form;79
3.15.6;1.15.6 Plane equation from three points;79
3.15.7;1.15.7 Plane through a point and normal to a line;80
3.15.8;1.15.8 Plane through two points and parallel to a line;80
3.15.9;1.15.9 Intersection of two planes;80
3.15.10;1.15.10 Intersection of three planes;81
3.15.11;1.15.11 Angle between two planes;81
3.15.12;1.15.12 Angle between a line and a plane;82
3.15.13;1.15.13 Intersection of a line and a plane;82
3.15.14;1.15.14 Position and distance of the nearest point on a plane to a point;82
3.15.15;1.15.15 Reflection of a point in a plane;83
3.15.16;1.15.16 Plane equidistant from two points;83
3.15.17;1.15.17 Reflected ray on a surface;83
3.16;1.16 Lines, planes and spheres;84
3.16.1;1.16.1 Line intersecting a sphere;84
3.16.2;1.16.2 Sphere touching a plane;84
3.16.3;1.16.3 Touching spheres;84
3.17;1.17 Three-dimensional triangles;86
3.17.1;1.17.1 Point inside a triangle;86
3.17.2;1.17.2 Unknown coordinate value inside a triangle;86
3.18;1.18 Parametric curves and patches;87
3.18.1;1.18.1 Parametric curve in R2;87
3.18.2;1.18.2 Parametric curve in R3;87
3.18.3;1.18.3 Planar patch;87
3.18.4;1.18.4 Modulated surface;88
3.18.5;1.18.5 Quadratic Bézier curve;88
3.18.6;1.18.6 Cubic Bézier curve;88
3.18.7;1.18.7 Quadratic Bézier patch;88
3.18.8;1.18.8 Cubic Bézier patch;89
3.19;1.19 Second degree surfaces in standard form;90
4;2 Examples;92
4.1;2.1 Trigonometry;94
4.2;2.2 Circles;97
4.3;2.3 Triangles;98
4.3.1;2.3.1 Checking for similar triangles;98
4.3.2;2.3.2 Checking for congruent triangles;98
4.3.3;2.3.3 Solving the angles and sides of a triangle;99
4.3.4;2.3.4 Calculating the area of a triangle;100
4.3.5;2.3.5 The center and radius of the inscribed and circumscribed circles for a triangle;101
4.4;2.4 Quadrilaterals;103
4.5;2.5 Polygons;105
4.6;2.6 Three-dimensional objects;107
4.6.1;2.6.1 Cone, cylinder and sphere;107
4.6.2;2.6.2 Conical frustum, spherical segment and torus;107
4.6.3;2.6.3 Tetrahedron;108
4.7;2.7 Coordinate systems;109
4.7.1;2.7.1 Cartesian coordinates in R2;109
4.7.2;2.7.2 Cartesian coordinates in R3;109
4.7.3;2.7.3 Polar coordinates;109
4.7.4;2.7.4 Cylindrical coordinates;110
4.7.5;2.7.5 Spherical coordinates;111
4.8;2.8 Vectors;113
4.8.1;2.8.1 Vector between two points;113
4.8.2;2.8.2 Scaling a vector;113
4.8.3;2.8.3 Reversing a vector;113
4.8.4;2.8.4 Magnitude of a vector;113
4.8.5;2.8.5 Normalizing a vector to a unit length;113
4.8.6;2.8.6 Vector addition/subtraction;113
4.8.7;2.8.7 Position vector;114
4.8.8;2.8.8 Scalar (dot) product;114
4.8.9;2.8.9 Angle between two vectors;114
4.8.10;2.8.10 Vector (cross) product;114
4.8.11;2.8.11 Scalar triple product;115
4.8.12;2.8.12 Vector normal to a triangle;115
4.8.13;2.8.13 Area of a triangle;115
4.9;2.9 Quaternions;116
4.9.1;2.9.1 Quaternion addition and subtraction;116
4.9.2;2.9.2 Quaternion multiplication;116
4.9.3;2.9.3 Magnitude of a quaternion;116
4.9.4;2.9.4 The inverse quaternion;116
4.9.5;2.9.5 Rotating a vector;116
4.9.6;2.9.6 Quaternion as a matrix;117
4.10;2.10 Transformations;118
4.10.1;2.10.1 Scaling relative to the origin in R2;118
4.10.2;2.10.2 Scaling relative to a point in R2;118
4.10.3;2.10.3 Translation in R2;118
4.10.4;2.10.4 Rotation about the origin in R2;119
4.10.5;2.10.5 Rotation about a point in R2;119
4.10.6;2.10.6 Shearing along the x-axis in R2;119
4.10.7;2.10.7 Shearing along the y-axis in R2;120
4.10.8;2.10.8 Reflection about the x-axis in R2;120
4.10.9;2.10.9 Reflection about the y-axis in R2;120
4.10.10;2.10.10 Reflection about a line parallel with the x-axis in R2;121
4.10.11;2.10.11 Reflection about a line parallel with the y-axis in R2;121
4.10.12;2.10.12 Translated change of axes in R2;121
4.10.13;2.10.13 Rotated change of axes in R2;122
4.10.14;2.10.14 The identity matrix in R2;122
4.10.15;2.10.15 Scaling relative to the origin in R3;122
4.10.16;2.10.16 Scaling relative to a point in R3;123
4.10.17;2.10.17 Translation in R3;123
4.10.18;2.10.18 Rotation about the x-axis in R3;123
4.10.19;2.10.19 Rotation about the y-axis in R3;124
4.10.20;2.10.20 Rotation about the z-axis in R3;124
4.10.21;2.10.21 Rotation about an arbitrary axis in R3;124
4.10.22;2.10.22 Reflection about the yz-plane in R3;125
4.10.23;2.10.23 Reflection about the zx-plane in R3;125
4.10.24;2.10.24 Reflection about the xy-plane in R3;125
4.10.25;2.10.25 Reflection about a plane parallel with the yz-plane in R3;126
4.10.26;2.10.26 Reflection about a plane parallel with the zx-plane in R3;126
4.10.27;2.10.27 Reflection about a plane parallel with the xy-plane in R3;126
4.10.28;2.10.28 Translated axes in R3;127
4.10.29;2.10.29 Rotated axes in R3;127
4.10.30;2.10.30 The identity matrix in R3;127
4.11;2.11 Two-dimensional straight lines;128
4.11.1;2.11.1 Convert the normal form of the line equation to its general form and the Hessian normal form;128
4.11.2;2.11.2 Derive the unit normal vector and perpendicular from the origin to the line for the line equation 3x+4y+6=0;128
4.11.3;2.11.3 Derive the straight-line equation from two points;129
4.11.4;2.11.4 Point of intersection of two straight lines;130
4.11.5;2.11.5 Calculate the angle between two straight lines;131
4.11.6;2.11.6 Test if three points lie on a straight line;132
4.11.7;2.11.7 Test for parallel and perpendicular lines;133
4.11.8;2.11.8 Find the position and distance of the nearest point on a line to the origin;134
4.11.9;2.11.9 Find the position and distance of the nearest point on a line to a point;135
4.11.10;2.11.10 Find the reflection of a point in a line passing through the origin;136
4.11.11;2.11.11 Find the reflection of a point in a line;137
4.11.12;2.11.12 Find the normal to a line through a point;138
4.11.13;2.11.13 Find the line equidistant from two points;139
4.11.14;2.11.14 Creating the parametric line equation for a line segment;140
4.11.15;2.11.15 Intersecting two line segments;140
4.12;2.12 Lines and circles;142
4.12.1;2.12.1 Line intersecting a circle;142
4.12.2;2.12.2 Touching and intersecting circles;145
4.13;2.13 Second degree curves;147
4.13.1;2.13.1 Circle;147
4.13.2;2.13.2 Ellipse;147
4.13.3;2.13.3 Parabola;147
4.13.4;2.13.4 Hyperbola;148
4.14;2.14 Three-dimensional straight lines;149
4.14.1;2.14.1 Derive the straight-line equation from two points;149
4.14.2;2.14.2 Intersection of two straight lines;149
4.14.3;2.14.3 Calculate the angle between two straight lines;150
4.14.4;2.14.4 Test if three points lie on a straight line;150
4.14.5;2.14.5 Test for parallel and perpendicular straight lines;151
4.14.6;2.14.6 Find the position and distance of the nearest point on a line to the origin;151
4.14.7;2.14.7 Find the position and distance of the nearest point on a line to a point;151
4.14.8;2.14.8 Find the reflection of a point in a line;152
4.14.9;2.14.9 Find the normal to a line through a point;152
4.14.10;2.14.10 Find the shortest distance between two skew lines;153
4.15;2.15 Planes;154
4.15.1;2.15.1 Cartesian form of the plane equation;154
4.15.2;2.15.2 General form of the plane equation;154
4.15.3;2.15.3 Hessian normal form of the plane equation;154
4.15.4;2.15.4 Parametric form of the plane equation;155
4.15.5;2.15.5 Converting a plane equation from parametric form to general form;155
4.15.6;2.15.6 Plane equation from three points;156
4.15.7;2.15.7 Plane through a point and normal to a line;157
4.15.8;2.15.8 Plane through two points and parallel to a line;157
4.15.9;2.15.9 Intersection of two planes;158
4.15.10;2.15.10 Intersection of three planes;160
4.15.11;2.15.11 Angle between two planes;162
4.15.12;2.15.12 Angle between a line and a plane;162
4.15.13;2.15.13 Intersection of a line and a plane;163
4.15.14;2.15.14 Position and distance of the nearest point on a plane to a point;163
4.15.15;2.15.15 Reflection of a point in a plane;164
4.15.16;2.15.16 Plane equidistant from two points;164
4.15.17;2.15.17 Reflected ray on a surface;165
4.16;2.16 Lines, planes and spheres;167
4.16.1;2.16.1 Line intersecting a sphere;167
4.16.2;2.16.2 Sphere touching a plane;168
4.16.3;2.16.3 Touching spheres;169
4.17;2.17 Three-dimensional triangles;170
4.17.1;2.17.1 Coordinates of a point inside a triangle;170
4.17.2;2.17.2 Unknown coordinate value inside a triangle;171
4.18;2.18 Parametric curves and patches;173
4.18.1;2.18.1 Parametric curves in R2;173
4.18.2;2.18.2 Parametric curves in R3;177
4.18.3;2.18.3 Planar patch;181
4.18.4;2.18.4 Parametric surfaces in R3;182
4.18.5;2.18.5 Quadratic Bézier curve;184
4.18.6;2.18.6 Cubic Bézier curve;184
4.18.7;2.18.7 Quadratic Bézier patch;185
4.18.8;2.18.8 Cubic Bézier patch;186
4.19;2.19 Second degree surfaces in standard form;187
5;3 Proofs;188
5.1;3.1 Trigonometry;190
5.1.1;3.1.1 Trigonometric functions and identities;190
5.1.2;3.1.2 Cofunction identities;190
5.1.3;3.1.3 Pythagorean identities;190
5.1.4;3.1.4 Useful trigonometric values;191
5.1.5;3.1.5 Compound angle identities;192
5.1.6;3.1.6 Double-angle identities;194
5.1.7;3.1.7 Multiple-angle identities;194
5.1.8;3.1.8 Functions of the half-angle;195
5.1.9;3.1.9 Functions of the half-angle using the perimeter of a triangle;196
5.1.10;3.1.10 Functions converting to the half-angle tangent form;197
5.1.11;3.1.11 Relationships between sums of functions;199
5.1.12;3.1.12 Inverse trigonometric functions;201
5.2;3.2 Circles;202
5.2.1;3.2.1 Proof: Angles subtended by the same arc;202
5.2.2;3.2.2 Proof: Alternate segment theorem;202
5.2.3;3.2.3 Proof: Area of a circle, sector and segment;203
5.2.4;3.2.4 Proof: Chord theorem;205
5.2.5;3.2.5 Proof: Secant theorem;205
5.2.6;3.2.6 Proof: Secant–tangent theorem;205
5.2.7;3.2.7 Proof: Area of an ellipse;206
5.3;3.3 Triangles;208
5.3.1;3.3.1 Proof: Theorem of Pythagoras;208
5.3.2;3.3.2 Proofs: Properties of triangles;208
5.3.3;3.3.3 Proof: Altitude theorem;211
5.3.4;3.3.4 Proof: Area of a triangle;212
5.3.5;3.3.5 Proof: Internal and external angles of a triangle;215
5.3.6;3.3.6 Proof: The medians of a triangle are concurrent at its centroid;215
5.3.7;3.3.7 Proof: Radius and center of the inscribed circle for a triangle;217
5.3.8;3.3.8 Proof: Radius and center of the circumscribed circle for a triangle;220
5.4;3.4 Quadrilaterals;226
5.4.1;3.4.1 Proof: Properties of quadrilaterals;226
5.4.2;3.4.2 Proof: The opposite sides and angles of a parallelogram are equal;229
5.4.3;3.4.3 Proof: The diagonals of a parallelogram bisect each other;229
5.4.4;3.4.4 Proof: The diagonals of a square are equal, intersect at right angles and bisect the opposite angles;230
5.4.5;3.4.5 Proof: Area of a parallelogram;231
5.4.6;3.4.6 Proof: Area of a quadrilateral;231
5.4.7;3.4.7 Proof: Area of a general quadrilateral using Heron’s formula;233
5.4.8;3.4.8 Proof: Area of a trapezoid;235
5.4.9;3.4.9 Proof: Radius and center of the circumscribed circle for a rectangle;236
5.5;3.5 Polygons;237
5.5.1;3.5.1 Proof: The internal angles of a polygon;237
5.5.2;3.5.2 Proof: The external angles of a polygon;237
5.5.3;3.5.3 Proof: Alternate internal angles of a cyclic polygon;238
5.5.4;3.5.4 Proof: Area of a regular polygon;239
5.5.5;3.5.5 Proof: Area of a polygon;240
5.5.6;3.5.6 Proof: Properties of regular polygons;241
5.6;3.6 Three-dimensional objects;243
5.6.1;3.6.1 Proof: Volume of a prism;243
5.6.2;3.6.2 Proof: Surface area of a rectangular pyramid;244
5.6.3;3.6.3 Proof: Volume of a rectangular pyramid;245
5.6.4;3.6.4 Volume of a rectangular pyramidal frustum;246
5.6.5;3.6.5 Proof: Volume of a triangular pyramid;246
5.6.6;3.6.6 Proof: Surface area of a right cone;247
5.6.7;3.6.7 Proof: Surface area of a right conical frustum;247
5.6.8;3.6.8 Proof: Volume of a cone;248
5.6.9;3.6.9 Proof: Volume of a right conical frustum;249
5.6.10;3.6.10 Proof: Surface area of a sphere;249
5.6.11;3.6.11 Proof: Volume of a sphere;250
5.6.12;3.6.12 Proof: Area and volume of a torus;252
5.6.13;3.6.13 Proof: Radii of the spheres associated with the Platonic solids;252
5.6.14;3.6.14 Proof: Inner and outer radii for the Platonic solids;257
5.6.15;3.6.15 Proof: Dihedral angles for the Platonic solids;261
5.6.16;3.6.16 Proof: Surface area and volume of the Platonic solids;265
5.7;3.7 Coordinate systems;268
5.7.1;3.7.1 Cartesian coordinates;268
5.7.2;3.7.2 Polar coordinates;268
5.7.3;3.7.3 Cylindrical coordinates;269
5.7.4;3.7.4 Spherical coordinates;269
5.8;3.8 Vectors;271
5.8.1;3.8.1 Proof: Magnitude of a vector;271
5.8.2;3.8.2 Proof: Normalizing a vector to a unit length;271
5.8.3;3.8.3 Proof: Scalar (dot) product;271
5.8.4;3.8.4 Proof: Commutative law of the scalar product;272
5.8.5;3.8.5 Proof: Associative law of the scalar product;272
5.8.6;3.8.6 Proof: Angle between two vectors;272
5.8.7;3.8.7 Proof: Vector (cross) product;273
5.8.8;3.8.8 Proof: The non-commutative law of the vector product;273
5.8.9;3.8.9 Proof: The associative law of the vector product;274
5.8.10;3.8.10 Proof: Scalar triple product;274
5.9;3.9 Quaternions;275
5.9.1;3.9.1 Definition of a quaternion;275
5.10;3.10 Transformations;279
5.10.1;3.10.1 Proof: Scaling in R2;279
5.10.2;3.10.2 Proof: Translation in R2;280
5.10.3;3.10.3 Proof: Rotation in R2;280
5.10.4;3.10.4 Proof: Shearing in R2;281
5.10.5;3.10.5 Proof: Reflection in R2;282
5.10.6;3.10.6 Proof: Change of axes in R2;283
5.10.7;3.10.7 Proof: Identity matrix in R2;284
5.10.8;3.10.8 Proof: Scaling in R3;284
5.10.9;3.10.9 Proof: Translation in R3;285
5.10.10;3.10.10 Proof: Rotation in R3;285
5.10.11;3.10.11 Proof: Reflection in R3;287
5.10.12;3.10.12 Proof: Change of axes in R3;289
5.10.13;3.10.13 Proof: Identity matrix in R3;290
5.11;3.11 Two-dimensional straight lines;291
5.11.1;3.11.1 Proof: Cartesian form of the line equation;291
5.11.2;3.11.2 Proof: Hessian normal form (after Otto Hesse (1811–1874));292
5.11.3;3.11.3 Proof: Equation of a line from two points;292
5.11.4;3.11.4 Proof: Point of intersection of two straight lines;294
5.11.5;3.11.5 Proof: Angle between two straight lines;295
5.11.6;3.11.6 Proof: Three points lie on a straight line;296
5.11.7;3.11.7 Proof: Parallel and perpendicular straight lines;297
5.11.8;3.11.8 Proof: Shortest distance to a line;298
5.11.9;3.11.9 Proof: Position and distance of a point on a line perpendicular to the origin;298
5.11.10;3.11.10 Proof: Position and distance of the nearest point on a line to a point;299
5.11.11;3.11.11 Proof: Position of a point reflected in a line;300
5.11.12;3.11.12 Proof: Normal to a line through a point;302
5.11.13;3.11.13 Proof: Line equidistant from two points;303
5.11.14;3.11.14 Proof: Equation of a two-dimensional line segment;304
5.11.15;3.11.15 Proof: Point of intersection of two two-dimensional line segments;305
5.12;3.12 Lines and circles;307
5.12.1;3.12.1 Proof: Line and a circle;307
5.12.2;3.12.2 Proof: Touching and intersecting circles;309
5.13;3.13 Second degree curves;312
5.13.1;3.13.1 Circle;312
5.13.2;3.13.2 Ellipse;312
5.13.3;3.13.3 Parabola;314
5.13.4;3.13.4 Hyperbola;315
5.14;3.14 Three-dimensional straight lines;316
5.14.1;3.14.1 Proof: Straight-line equation from two points;316
5.14.2;3.14.2 Proof: Intersection of two straight lines;316
5.14.3;3.14.3 Proof: Angle between two straight lines;317
5.14.4;3.14.4 Proof: Three points lie on a straight line;317
5.14.5;3.14.5 Proof: Parallel and perpendicular straight lines;317
5.14.6;3.14.6 Proof: Position and distance of a point on a line perpendicular to the origin;318
5.14.7;3.14.7 Proof: Position and distance of the nearest point on a line to a point;318
5.14.8;3.14.8 Proof: Position of a point reflected in a line;319
5.14.9;3.14.9 Proof: Normal to a line through a point;320
5.14.10;3.14.10 Proof: Shortest distance between two skew lines;321
5.15;3.15 Planes;322
5.15.1;3.15.1 Proof: Equation to a plane;322
5.15.2;3.15.2 Proof: Plane equation from three points;325
5.15.3;3.15.3 Proof: Plane through a point and normal to a line;327
5.15.4;3.15.4 Proof: Plane through two points and parallel to a line;327
5.15.5;3.15.5 Proof: Intersection of two planes;327
5.15.6;3.15.6 Proof: Intersection of three planes;329
5.15.7;3.15.7 Proof: Angle between two planes;330
5.15.8;3.15.8 Proof: Angle between a line and a plane;330
5.15.9;3.15.9 Proof: Intersection of a line and a plane;330
5.15.10;3.15.10 Proof: Position and distance of the nearest point on a plane to a point;331
5.15.11;3.15.11 Proof: Reflection of a point in a plane;332
5.15.12;3.15.12 Proof: Plane equidistant from two points;332
5.15.13;3.15.13 Proof: Reflected ray on a surface;333
5.16;3.16 Lines, planes and spheres;334
5.16.1;3.16.1 Proof: Line intersecting a sphere;334
5.16.2;3.16.2 Proof: Sphere touching a plane;335
5.16.3;3.16.3 Proof: Touching spheres;335
5.17;3.17 Three-dimensional triangles;337
5.17.1;3.17.1 Proof: Point inside a triangle;337
5.17.2;3.17.2 Proof: Unknown coordinate value inside a triangle;337
5.18;3.18 Parametric curves and patches;338
5.18.1;3.18.1 Proof: Planar surface patch;338
5.18.2;3.18.2 Proof: Bézier curves in R2 andR3;338
5.18.3;3.18.3 Proof: Bézier surface patch in R3;340
6;4 Glossary;343
7;5 Bibliography;351
8;Index;353



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.