Villalobos Alva | Beginning Mathematica and Wolfram for Data Science | Buch | 978-1-4842-6593-2 | sack.de

Buch, Englisch, 416 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 832 g

Villalobos Alva

Beginning Mathematica and Wolfram for Data Science

Applications in Data Analysis, Machine Learning, and Neural Networks
1. Auflage 2021
ISBN: 978-1-4842-6593-2
Verlag: Apress

Applications in Data Analysis, Machine Learning, and Neural Networks

Buch, Englisch, 416 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 832 g

ISBN: 978-1-4842-6593-2
Verlag: Apress


Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages.

You’ll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. 

You’ll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you’ll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You’ll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. 

What You Will Learn

  • Use Mathematica to explore data and describe the concepts using Wolfram language commands
  • Create datasets, work with data frames, and create tables
  • Import, export, analyze, and visualize data
  • Work with the Wolfram data repository
  • Build reports on the analysis
  • Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering

Who This Book Is For

Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language.

Villalobos Alva Beginning Mathematica and Wolfram for Data Science jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1. Introductiona. What is Data science?b. Data science and Statisticsc. Data scientist
2. Introduction to Mathematicaa. Why Mathematica?b. Wolfram Languagec. Structure of Mathematicad. Notebooks e. How Mathematica worksf. Input Form
3. Data Manipulation a. Listsb. Lists of objectsc. Manipulating listsd. Operations with listse. Indexed Tablesf. Working with data framesg. Datasets
4. Data Analysisa. Data Import and exportb. Wolfram data repositoryc. Statistical Analysisd. Visualizing datae. Making reports
5. Machine learning with Wolfram Languagea. Linear Regressionb. Multiple Regressionc. Logistic Regressiond. Decision Tresse. Data Clustering
6. Neural networks with Wolfram Languagea. Network Data and structureb. Network Layersc. Perceptron Modeld. Multi-layer Neural Networke. Using preconstructed nets from Wolfram Neural net repositoryf. LeNet Neural net for text recognition


Jalil Villalobos Alva is a Wolfram language programmer and Mathematica user. He graduated with a degree in engineering physics from the Universidad Iberoamericana in Mexico City. His research background comprises quantum physics, bionformatics, proteomics, and protein design. His academic interests cover the topics of quantum technology, bioinformatics, machine learning, stochastic processes, and space engineering. During his idle hours he likes to play soccer, swim, and listen to music.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.