Vieu / Ferraty | Nonparametric Functional Data Analysis | Buch | 978-1-4419-2141-3 | sack.de

Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Springer Series in Statistics

Vieu / Ferraty

Nonparametric Functional Data Analysis

Theory and Practice
1. Auflage. Softcover version of original hardcover Auflage 2006
ISBN: 978-1-4419-2141-3
Verlag: Springer

Theory and Practice

Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Springer Series in Statistics

ISBN: 978-1-4419-2141-3
Verlag: Springer


Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Vieu / Ferraty Nonparametric Functional Data Analysis jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Statistical Background for Nonparametric Statistics and Functional Data.- to Functional Nonparametric Statistics.- Some Functional Datasets and Associated Statistical Problematics.- What is a Well-Adapted Space for Functional Data?.- Local Weighting of Functional Variables.- Nonparametric Prediction from Functional Data.- Functional Nonparametric Prediction Methodologies.- Some Selected Asymptotics.- Computational Issues.- Nonparametric Classification of Functional Data.- Functional Nonparametric Supervised Classification.- Functional Nonparametric Unsupervised Classification.- Nonparametric Methods for Dependent Functional Data.- Mixing, Nonparametric and Functional Statistics.- Some Selected Asymptotics.- Application to Continuous Time Processes Prediction.- Conclusions.- Small Ball Probabilities and Semi-metrics.- Some Perspectives.


Frédéric Ferraty and Philippe Vieu are both researchers in statistics at Toulouse University (France). They are co-founders and co-organizers of the working group STAPH which acquired an international reputation for functional and operatorial statistics. They are authors of many international publications in nonparametric inference as well as functional data analysis. Their scientific works are based on extensive collaborations both with academic statisticians and with scientists from other areas. They have been invited to organize special sessions on functional data in recent international conferences and to teach Ph.D. courses in various countries.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.