Verma / Woungang / Pattanaik | Advanced Network Technologies and Intelligent Computing | Buch | 978-3-031-64069-8 | sack.de

Buch, Englisch, Band 2092, 398 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

Verma / Woungang / Pattanaik

Advanced Network Technologies and Intelligent Computing

Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part III
2024
ISBN: 978-3-031-64069-8
Verlag: Springer Nature Switzerland

Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part III

Buch, Englisch, Band 2092, 398 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-64069-8
Verlag: Springer Nature Switzerland


The 4-volume proceedings set CCIS 2090, 2091,2092 and 2093 constitute the refereed post-conference proceedings of the Third International Conference on Advanced Network Technologies and Intelligent Computing, ANTIC 2023, held in Varanasi, India, during December 20-22, 2023.

The 87 full papers and 11 short papers included in this book were carefully reviewed and selected from 487 submissions. The conference papers are organized in topical sections on: 

Part I - Advanced Network Technologies.

Part II - Advanced Network Technologies; Intelligent Computing.

Part III- IV - Intelligent Computing.

Verma / Woungang / Pattanaik Advanced Network Technologies and Intelligent Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Intelligent Computing.
.- Implementation and Performance Evaluation of Deep Learning Models for Disease Classification and Severity Estimation of Coffee Leaves.
.- Flow-Optimized Channel-Attentive Excitation DenseNet Algorithm for Multi-Disease Classification and Severity Estimation.
.- Image Captioning using Deep Learning.
.- Visualizing Optimal Classifiers in EEG-Based Sleepy Driver Prediction.
.- Revolutionizing Glaucoma Diagnosis with a Hybrid AI Algorithm.
.- Unravelling Crop Yield Secrets Through Identification of Significant Factors Using Machine Learning.
.- Comparative Analysis of Short-Term Load Forecasting Using K-Nearest Neighbor, Random Forest, and Gradient Boost Models.
.- Heuristics for Influence Maximization with Tiered Influence and Activation thresholds.
.- Sentiment Analysis and Offensive Language Identification In Code-Mixed Tamil-English Languages Using Transformer-based Models.
.- Performance evaluation of Deep Transfer Learning and Semantic Segmentation models for crop and weed detection in the Sesame Production System.
.- Machine Learning Analysis on Hate Speech against Asians.
.- Deep Transfer Learning for Enhanced Blackgram Disease Detection: A Transfer Learning - Driven Approach.
.- Sustainable Natural Gas Price Forecasting with DEEPAR.
.- Whale Optimized Deep Learning Technique for Accurate Skin Cancer Identification.
.- Multi-Domain Feature Extraction Methods for Classification of Human Emotions from Electroencephalography (EEG) Signals.
.- Enhancing Speech Quality using Spectral Subtraction and Time-Frequency Filtering.
.- Analyzing the performance of BERT for the sentiment classification task in Bengali text.
.- Student’s Performance Prediction using Decision Tree Regressor.
.- A Comprehensive Analysis on Features and Performance Evaluation Metrics in Audio-Visual Voice Conversion.
.- Time Series Analytic Models for Forecasting Vehicular Registration Volume in the Indian Context.
.- Impact of Clinical Features on Disease Diagnosis using Knowledge Graph Embedding and Machine Learning: a Detailed Analysis.
.- Advancements in Alzheimer's Disease Diagnosis: The MRI-CNN Synergy for Early Detection.
.- Drinking Addiction Predictive Model Using Body  Characteristics Machine Learning Approach.
.- An Ensemble of Machine Learning Models Utilizing Deep Convolutional Features for Medical Image Classification.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.