Verma / Woungang / Pattanaik | Advanced Network Technologies and Intelligent Computing | Buch | 978-3-031-64066-7 | sack.de

Buch, Englisch, Band 2093, 382 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g

Reihe: Communications in Computer and Information Science

Verma / Woungang / Pattanaik

Advanced Network Technologies and Intelligent Computing

Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part IV
2024
ISBN: 978-3-031-64066-7
Verlag: Springer Nature Switzerland

Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part IV

Buch, Englisch, Band 2093, 382 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-64066-7
Verlag: Springer Nature Switzerland


The 4-volume proceedings set CCIS 2090, 2091,2092 and 2093 constitute the refereed post-conference proceedings of the Third International Conference on Advanced Network Technologies and Intelligent Computing, ANTIC 2023, held in Varanasi, India, during December 20-22, 2023.

The 87 full papers and 11 short papers included in this book were carefully reviewed and selected from 487 submissions. The conference papers are organized in topical sections on: 

Part I - Advanced Network Technologies.

Part II - Advanced Network Technologies; Intelligent Computing.

Part III - IV - Intelligent Computing.

Verma / Woungang / Pattanaik Advanced Network Technologies and Intelligent Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Intelligent Computing. 
.- Neural Network Approach for Early detection of Sugarcane Diseases.
.- Enhanced Residual Network Framework for Robust Classification of Noisy Lung Cancer CT Images.
.- Single-Cell Drug Perturbation Prediction Using Machine Learning.
.- Underwater Image Enhancement using Convolutional Neural Network and the MultiUnet Model.
.- A hybrid time series model for the spatio-temporal analysis of air pollution prediction based on PM2.5.
.- Detection of Lung Diseases Using Deep Transfer Learning-Based Convolution Neural Networks.
.- DG-GAN: A Deep Neural Network for Real-World Anomaly Detection in Surveillance Videos.
.- Auto-LVEF: A novel method to determine Ejection Fraction from 2D echocardiograms.
.- Phishing Detection in Browser-In-The-Middle: A Novel Empirical Approach Incorporating Machine Learning Algorithms.
.- Feature Engineering for Predicting Consumer Purchase Behavior: A Comprehensive Analysis.
.- Enhanced Simulation of Collision Events Using Quantum GANs for Jet Images Generation.
.- Class imbalance learning using Fuzzy SVM with Fuzzy Weighted Gaussian Kernel.
.- Material Handling Cost (MHC) Minimization through Facility Layout Design (FLD) Using Genetic Algorithm (GA) combined with the Particle Swarm Optimization (PSO) Method.
.- Detecting ADHD among children using EEG signals.
.- Enhancing Skin Cancer Classification with Ensemble Models.
.- Efficient real-time Sign Detection for Autonomous Vehical in Hazy environment using Deep Learning Models.
.- Kannada Continuous Speech Recognition using Deep Learning.
.- A new type of classification algorithm inspired by the chromatographic separation mechanism.
.- Comparative Analysis of ELM and Sparse Bayesian ELM for Healthcare Diagnosis.
.- Integration of Generative AI and Deep Tabular Data Learning Architecture for Heart Attack Prediction.
.- Navigating the Domain Shift: Object Detection in Indian Road Datasets with Limited Data.
.- An Efficient Hybrid Algorithm with Novel Inver-over Operator and Ant Colony Optimization for Traveling Salesman Problem.
.- Sparsity Analysis of New Biased Pearson Similarity Measure for Memory Based Collaborative Filtering.
.- Advancing Medical Predictive Models with Integrated Approaches.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.