Vento / Hancock | Graph Based Representations in Pattern Recognition | Buch | 978-3-540-40452-1 | sack.de

Buch, Englisch, Band 2726, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

Reihe: Lecture Notes in Computer Science

Vento / Hancock

Graph Based Representations in Pattern Recognition

4th IAPR International Workshop, GbRPR 2003, York, UK, June 30 - July 2, 2003. Proceedings
2003
ISBN: 978-3-540-40452-1
Verlag: Springer Berlin Heidelberg

4th IAPR International Workshop, GbRPR 2003, York, UK, June 30 - July 2, 2003. Proceedings

Buch, Englisch, Band 2726, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-40452-1
Verlag: Springer Berlin Heidelberg


The refereed proceedings of the 4th IAPR International Workshop on Graph-Based Representation in Pattern Recognition, GbRPR 2003, held in York, UK in June/July 2003.

The 23 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on data structures and representation, segmentation, graph edit distance, graph matching, matrix methods, and graph clustering.

Vento / Hancock Graph Based Representations in Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Data Structures and Representation.- Construction of Combinatorial Pyramids.- On Graphs with Unique Node Labels.- Constructing Stochastic Pyramids by MIDES — Maximal Independent Directed Edge Set.- Segmentation.- Functional Modeling of Structured Images.- Building of Symbolic Hierarchical Graphs for Feature Extraction.- Comparison and Convergence of Two Topological Models for 3D Image Segmentation.- Graph Edit Distance.- Tree Edit Distance from Information Theory.- Self-Organizing Graph Edit Distance.- Graph Edit Distance with Node Splitting and Merging, and Its Application to Diatom Identification.- Graph Matching.- Orthonormal Kernel Kronecker Product Graph Mdatching.- Theoretical Analysis and Experimental Comparison of Graph Matching Algorithms for Database Filtering.- A Comparison of Three Maximum Common Subgraph Algorithms on a Large Database of Labeled Graphs.- Swap Strategies for Graph Matching.- Matrix Methods.- Graph Matching Using Spectral Seriation and String Edit Distance.- Graph Polynomials, Principal Pivoting, and Maximum Independent Sets.- Graph Partition for Matching.- Graph Clustering.- Spectral Clustering of Graphs.- Comparison of Distance Measures for Graph-Based Clustering of Documents.- Some Experiments on Clustering a Set of Strings.- A New Median Graph Algorithm.- Graph Clustering Using the Weighted Minimum Common Supergraph.- ACM Attributed Graph Clustering for Learning Classes of Images.- A Competitive Winner-Takes-All Architecture for Classification and Pattern Recognition of Structures.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.