E-Book, Englisch, 256 Seiten, eBook
Venkateswara / Panchanathan Domain Adaptation in Computer Vision with Deep Learning
1. Auflage 2020
ISBN: 978-3-030-45529-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 256 Seiten, eBook
ISBN: 978-3-030-45529-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Part I: Introduction.- Chapter 1: Introduction to Domain Adaptation.- Chapter 2: Shallow Domain Adaptation.- Part II: Domain Alignment in the Feature Space.- Chapter 3: d-SNE: Domain Adaptation using Stochastic Neighborhood Embedding.- Chapter 4: Deep Hashing Network for Unsupervised Domain Adaptation.- Chapter 5: Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation.- Part III: Domain Alignment in the Image Space.- Chapter 6: Unsupervised Domain Adaptation with Duplex Generative Adversarial Network.- Chapter 7: Domain Adaptation via Image to Image Translation.- Chapter 8: Domain Adaptation via Image Style Transfer.- Part IV: Future Directions in Domain Adaptation.- Chapter 9: Towards Scalable Image Classi?er Learning with Noisy Labels via Domain Adaptation.- Chapter 10: Adversarial Learning Approach for Open Set Domain Adaptation.- Chapter 11: UniversalDomain Adaptation.- Chapter 12: Multi-source Domain Adaptation by Deep CockTail Networks.- Chapter 13: Zero-Shot Task Transfer.