Vasudevan / Pulari | Deep Learning | Buch | 978-1-032-02885-9 | sack.de

Buch, Englisch, 306 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 435 g

Vasudevan / Pulari

Deep Learning

A Comprehensive Guide

Buch, Englisch, 306 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 435 g

ISBN: 978-1-032-02885-9
Verlag: CRC Press


Deep Learning: A Comprehensive Guide provides comprehensive coverage of Deep Learning (DL) and Machine Learning (ML) concepts. DL and ML are the most sought-after domains, requiring a deep understanding – and this book gives no less than that. This book enables the reader to build innovative and useful applications based on ML and DL. Starting with the basics of neural networks, and continuing through the architecture of various types of CNNs, RNNs, LSTM, and more till the end of the book, each and every topic is given the utmost care and shaped professionally and comprehensively.

Key Features

- Includes the smooth transition from ML concepts to DL concepts

- Line-by-line explanations have been provided for all the coding-based examples

- Includes a lot of real-time examples and interview questions that will prepare the reader to take up a job in ML/DL right away

- Even a person with a non-computer-science background can benefit from this book by following the theory, examples, case studies, and code snippets

- Every chapter starts with the objective and ends with a set of quiz questions to test the reader’s understanding

- Includes references to the related YouTube videos that provide additional guidance

AI is a domain for everyone. This book is targeted toward everyone irrespective of their field of specialization. Graduates and researchers in deep learning will find this book useful.
Vasudevan / Pulari Deep Learning jetzt bestellen!

Zielgruppe


Academic, Postgraduate, Professional, and Undergraduate Advanced

Weitere Infos & Material


1. Introduction to Deep Learning. 2. The Tools and Prerequisites. 3. Machine Learning: The Fundamentals 4. The Deep Learning Framework. 5. CNN– Convolutional Neural Networks – A Complete Understanding. 6. CNN Architectures – An Evolution 7. Recurrent Neural Networks. 8. Autoencoders. 9. Generative Models. 10. Transfer Learning. 11. Intel OpenVino – A Must Know Deep Learning Toolkit. 12. Interview Questions and Answers.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.