Buch, Englisch, 192 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 449 g
A Machine Learning Approach for Industrial Components
Buch, Englisch, 192 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 449 g
ISBN: 978-1-041-01163-7
Verlag: CRC Press
Data-Driven Fault Diagnosis delves into the application of machine learning techniques for achieving robust and efficient fault diagnosis in industrial components.
The book covers a range of key topics, including data acquisition and preprocessing, feature engineering, model selection and training, and real-time implementation of diagnostic systems. It examines popular machine learning algorithms like Support Vector Machines, Convolutional Neural Network, and Extreme Learning Machine, highlighting their strengths and limitations in different industrial contexts. Practical case studies and real-world examples from various sectors like manufacturing, energy, and transportation illustrate the real-world impact of these techniques.
The aim of this book is to empower engineers, data scientists, and researchers with the knowledge and tools necessary to implement data-driven fault diagnosis systems in their respective industrial domains.
.
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Technische Wissenschaften Technik Allgemein Industrial Engineering
- Geisteswissenschaften Design Produktdesign, Industriedesign
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
Weitere Infos & Material
1. Introduction. 2. Fault diagnosis of the Pelton turbine. 3. Fault diagnosis of the Francis turbine. 4. Fault diagnosis of the Centrifugal pump. 5. Fault diagnosis of bearing. 6. The future of machine learning in fault diagnosis. 7. References