Buch, Englisch, 112 Seiten, Format (B × H): 174 mm x 234 mm, Gewicht: 227 g
Buch, Englisch, 112 Seiten, Format (B × H): 174 mm x 234 mm, Gewicht: 227 g
ISBN: 978-90-5809-631-9
Verlag: A A Balkema Publishers
Flood disasters continue to occur in many countries in the world and cause tremendous casualties and property damage. To mitigate the effects of floods, a range of structural and non-structural measures have been employed including dykes, channelling, flood-proofing property, land-use regulation and flood warning schemes. Such schemes can include the use of Artificial Neural Networks (ANN) for modelling the rainfall run-off process as it is a quick and flexible approach which gives very promising results. However, the inability of ANN to extrapolate beyond the limits of the training range is a serious limitation of the method, and this book examines ways of side-stepping or solving this complex issue.
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Hydrologie, Hydrogeologie
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Geowissenschaften Umweltwissenschaften Umweltmanagement, Umweltökonomie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Geowissenschaften Umweltwissenschaften Umwelttechnik
- Geowissenschaften Geologie Limnologie (Süßwasser)
- Geowissenschaften Geologie GIS, Geoinformatik
Weitere Infos & Material
1 Introduction 2 Artificial Neural Networks 3 Preliminary considerations 4 Extrapolation management for Artificial Neural Network models of Rainfall-Runoff relationships 5 Recurrent Neural Networks 6 Choice of Input 7 Conclusions and recommendations 8 Samevatting 9 References 10 Data used for the study