Buch, Englisch, 131 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 262 g
Buch, Englisch, 131 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 262 g
Reihe: Advanced Courses in Mathematics - CRM Barcelona
ISBN: 978-3-7643-0408-9
Verlag: Springer
A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
Weitere Infos & Material
Equivariant K-Homology of the Classifying Space for Proper Actions.- On the Baum—Connes Assembly Map for Discrete Groups.