Buch, Englisch, 362 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Buch, Englisch, 362 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Reihe: Computational Intelligence Methods and Applications
ISBN: 978-981-99-9720-6
Verlag: Springer Nature Singapore
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. From Evolution to Intelligence: Exploring the Synergy of Optimization and Machine Learning.- Chapter 2. Metaheuristic and Evolutionary Algorithms in Ex-plainable Artificial Intelligence.- Chapter 3. Evolutionary Dynamic Optimization and Machine Learning.- Chapter 4. Evolutionary Techniques in making Efficient Deep-Learning Framework: A Review.- Chapter 5. Integrating Particle Swarm Optimization with Reinforcement Learning: A Promising Approach to Optimization.- Chapter 6. Synergies between Natural Language Processing and Swarm Intelligence Optimization: A Comprehensive Overview.- Chapter 7. Heuristics-based Hyperparameter Tuning for Transfer Learning Algorithms.- Chapter 8. Machine Learning Applications of Evolutionary and Metaheuristic Algorithms.- Chapter 9. Machine Learning Assisted Metaheuristic Based Optimization of Mixed Suspension Mixed Product Removal Process.- Chapter 10. Machine Learning based Intelligent RPL Attack Detection System for IoT Networks.- Chapter 11. Shallow and Deep Evolutionary Neural Networks applications in Solid Mechanics.- Chapter 12. Polymer and nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories.- Chapter 13. Synergistic combination of machine learning and evolutionary and heuristic algorithms for handling imbalance in biological and biomedical datasets.