Vaillant / Kajitani | Partial Differential Equations and Mathematical Physics | Buch | 978-0-8176-4309-6 | sack.de

Buch, Englisch, Band 52, 243 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1200 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Vaillant / Kajitani

Partial Differential Equations and Mathematical Physics

In Memory of Jean Leray

Buch, Englisch, Band 52, 243 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1200 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-0-8176-4309-6
Verlag: Birkhäuser Boston


The 17 invited research articles in this volume, all written by
leading experts in their respective fields, are dedicated to the great
French mathematician Jean Leray. A wide range of topics with
significant new results---detailed proofs---are presented in the areas
of partial differential equations, complex analysis, and mathematical
physics.
Key subjects are:
* Treated from the mathematical physics viewpoint: nonlinear stability
of an expanding universe, the compressible Euler equation, spin groups
and the Leray--Maslov index,
* Linked to the Cauchy problem: an intermediate case between effective
hyperbolicity and the Levi condition, global Cauchy--Kowalewski
theorem in some Gevrey classes, the analytic continuation of the
solution, necessary conditions for hyperbolic systems, well posedness
in the Gevrey class, uniformly diagonalizable systems and reduced
dimension, and monodromy of ramified Cauchy problem.
Additional articles examine results on:
* Local solvability for a system of partial differential operators, *
The hypoellipticity of second order operators, * Differential forms
and Hodge theory on analytic spaces, * Subelliptic operators and sub-
Riemannian geometry.
Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet-
Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B.
Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K.
Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji,
S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi
The book is suitable as a reference text for graduate students and
active researchers.
Vaillant / Kajitani Partial Differential Equations and Mathematical Physics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Differential Forms, Cycles and Hodge Theory on Complex Analytic Spaces.- On Exact Solutions of Linear PDEs.- Necessary Conditions for Hyperbolic Systems.- Monodromy of the Ramified Cauchy Problem.- Nonlinear Stability of an Expanding Universe with S1Isometry Group.- On the Cauchy Problem for a Weakly Hyperbolic Operator: An Intermediate Case between Effective Hyperbolicy and Levi Condition.- Symplectic Path Intersections and the Leray Index.- A Global Cauchy—Kowalewski Theorem in Some Gevrey Classes.- Sub-Riemannian Geometry and Subelliptic PDEs.- On the Analytic Continuation of the Solution of the Cauchy Problem.- Strong Gevrey Solvability for a System of Linear Partial Differential Equations.- Spherically Symmetric Solutions of the Compressible Euler Equation.- Hyperbolic Cauchy Problem Well Posed in the Class of Gevrey.- Absence of Eigenvalues of Dirac Type Operators.- The Behaviors of Singular Solutions of Partial Differential Equations in Some Class in the Complex Domain.- Systèmes Uniformément Diagonalisables, Dimension Réduite et Symétrie II.- On Hypoellipticity of the Operator exp
$$
\left[ { - {{\left {{x_1}} \right }^{ - \delta }}} \right]D_1^2 + x_1^4D_2^2 + 1
$$.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.