Vail | Topics in the Theory of Solid Materials | Buch | 978-0-7503-0729-1 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 155 mm x 238 mm, Gewicht: 671 g

Reihe: Series in Materials Science and Engineering

Vail

Topics in the Theory of Solid Materials


1. Auflage 2003
ISBN: 978-0-7503-0729-1
Verlag: CRC Press

Buch, Englisch, 384 Seiten, Format (B × H): 155 mm x 238 mm, Gewicht: 671 g

Reihe: Series in Materials Science and Engineering

ISBN: 978-0-7503-0729-1
Verlag: CRC Press


Topics in the Theory of Solid Materials provides a clear and rigorous introduction to a wide selection of topics in solid materials, overlapping traditional courses in both condensed matter physics and materials science and engineering. It introduces both the continuum properties of matter, traditionally the realm of materials science courses, and the quantum mechanical properties that are usually more emphasized in solid state physics courses, and integrates them in a manner that will be of use to students of either subject. The book spans a range of basic and more advanced topics, including stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves.

Topics in the Theory of Solid Materials is eminently suitable for graduates and final-year undergraduates in physics, materials science, and engineering, as well as more advanced researchers in academia and industry studying solid materials.

Vail Topics in the Theory of Solid Materials jetzt bestellen!

Zielgruppe


Undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.

1 Strain and stress in continuous media
1.1 Introduction
1.2 Deformation: strain and rotation
1.2.1 The strain tensor
1.2.2 The rotation tensor
1.3 Forces and stress
1.4 Linear elasticity
1.4.1 Hooke’s law
1.4.2 Isotropic media
1.4.3 Elastic moduli
1.4.4 Stability conditions
1.5 Equilibrium

2

Wave propagation in continuous media
2.1 Introduction
2.2 Vector ?elds
2.3 Equation of motion
2.4 Wave propagation
2.4.1 Shear and rotational waves
2.4.2 Dilatational or irrotational waves
2.4.3 General discussion
Appendix to Chapter 2
3 Thermal properties of continuous media
3.1 Introduction
3.2 Classical thermodynamics
3.2.1 The Maxwell relations
3.2.2 Elastic constants, bulk moduli and speci?c heats
3.3 Thermal conduction and wave motion
3.4 Wave attenuation by thermal conduction

4 Surface waves

4.1 Introduction

4.2 Rayleigh waves

4.3 Boundary conditions

4.4 Dispersion relation

4.5 Character of the wave motion

5 Dislocations

5.1 Introduction

5.2 Description of dislocations

5.3 Deformation ?elds of dislocations

5.3.1 Screw dislocation

5.3.2 Edge dislocation

5.4 Uniform dislocation motion

5.5 Further study of dislocations

6 Classical theory of the polaron

6.1 Introduction

6.2 Equations of motion

6.3 The constant-velocity polaron

6.4 Polaron in a magnetic ?eld: quantization

7 Atomistic quantum theory of solids

7.1 Introduction

7.2 The hamiltonian of a solid

7.3 Nuclear dynamics: the adiabatic approximation

7.4 The harmonic approximation

7.5 Phonons

7.5.1 Periodic boundary conditions for bulk properties

7.5.2 The dynamical matrix of the crystal

7.5.3 The normal modes of crystal vibration

7.5.4 Electrons and phonons: total energy

7.6 Statistical thermodynamics of a solid

7.6.1 Partition function of the crystal

7.6.2 Equation of state of the crystal

7.6.3 Thermodynamic internal energy of the crystal;
phonons as bosons

7.7 Summary

8 Phonons

8.1 Introduction

8.2 Monatomic linear chain

8.3 Diatomic linear chain

8.4 Localized mode of a point defect

9 Classical atomistic modelling of crystals
9.1 Introduction

9.2 The shell model for insulating crystals

9.3 Cohesive energy of a crystal

9.4 Elastic constants

9.5 Dielectric and piezoelectric constants

10 Classical atomic di?usion in solids

10.1 Introduction

10.2 The di?usion equation

10.2.1 Derivation

10.2.2 Planar source problem

10.3 Di?usion as a random walk

10.4 Equilibrium concentration of point defects

10.5 Temperature dependence of di?usion: the Vineyard relation

Appendix to Chapter 10: Stirling’s formula

11 Point defects in crystals

11.1 Introduction

11.1.1 Crystals and defects

11.1.2 Modelling of point defects in ionic crystals

11.2 Classical di?usion

11.2.1 Copper and silver di?usion in alkali halides

11.2.2 Dissociation of the oxygen-vacancy defect complex
in BaF2

11.3 Defect complex stability

11.4 Impurity charge-state stability

11.4.1 Nickel in MgO

11.4.2 Oxygen in BaF2

11.5 Optical excitation

11.5.1 Frenkel exciton and impurity absorption in MgO

11.5.2 Cuþ in NaF

11.5.3 O- in BaF2

11.6 Spin densities

11.6.1 F center in NaF
11.6.2 F2þ center in NaF

11.6.3 F2þ * center in NaF

11.7 Local band-edge modi?cation

11.7.1 Valence band edge in NiO: Li

11.7.2 Conduction band edge in BaF2: O-

11.8 Electronic localization

11.9 Quantum di?usion

11.10 E?ective force constants for local modes

11.11 Summary

Appendix to Chapter 11: the ICECAP method

12 Theoretical foundations of molecular cluster computations

12.1 Introduction

12.2 Hartree–Fock approximation

12.2.1 The approximation

12.2.2 Normalization

12.2.3 Total energy

12.2.4 Charge density and exchange charge

12.2.5 The single-particle density functional

12.3 The Fock equation

12.3.1 The variational derivation

12.3.2 Total energy algorithm

12.3.3 Solution of the Fock equation

12.4 Localizing potentials

12.5 Embedding in a crystal

12.5.1 Introduction

12.5.2 Approximate partitioning with a localizing potential

12.5.3 Summary

12.6 Correlation

12.7 One-, two- and N-particle density functionals

12.7.1 Introduction

12.7.2 Density functional of Hohenberg and Kohn

12.7.3 Reduced density matrices

12.7.4 The many-fermion system

12.7.5 The density functional and the two-particle density operator

13 Paramagnetism and diamagnetism in the electron gas

13.1 Introduction

13.2 Paramagnetism of the electron gas

13.2.1 The total energy

13.2.2 The magnetic susceptibility

13.2.3 Solution at low temperature

13.2.4 Solution at high temperature

13.3 Diamagnetism of the electron gas

13.3.1 Introduction

13.3.2 The Landau levels

13.3.3 The Fermi distribution

13.3.4 Energy considerations

13.3.5 Magnetization: the de Haas–van Alphen e?ect

13.3.6 Diamagnetism at T 0

Appendix to Chapter 13

14 Charge density waves in solids

14.1 Introduction

14.2 E?ective electron–electron interaction

14.3 The Hartree equation: uniform and periodic cases

14.3.1 The Hartree approximation

14.3.2 The uniform solution

14.3.3 The periodic solution

14.4 Charge density waves: the Mathieu equation

14.4.1 The Mathieu equation

14.4.2 Solution away from the band gap

14.4.3 Solution near the band gap

14.4.4 The self-consistency condition

14.4.5 The total energy

14.5 Discussion

References

Exercises

Answers

Author index

Subject index




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.