E-Book, Englisch, Band 86, 139 Seiten, eBook
Reihe: Lecture Notes in Statistics
Vach Logistic Regression with Missing Values in the Covariates
Erscheinungsjahr 2012
ISBN: 978-1-4612-2650-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 86, 139 Seiten, eBook
Reihe: Lecture Notes in Statistics
ISBN: 978-1-4612-2650-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction.- I: Logistic Regression with Two Categorical Covariates.- 2. The complete data case.- 3. Missing value mechanisms.- 4. Estimation methods.- 5. Quantitative comparisons: Asymptotic results.- 6. Quantitative comparisons: Results from finite sample size simulation studies.- 7. Examples.- 8. Sensitivity analysis.- II: Generalizations.- 9. General regression models with missing values in one of two covariates.- 10. Generalizations for more than two covariates.- 11. Missing values and subsampling.- 12. Further Examples.- 13. Discussion.- Appendices.- A. 1 ML Estimation in the presence of missing values A.2 The EM algorithm.- B. 1 Explicit representation of the score function of ML Estimation and the information matrix in the complete data case.- B. 2 Explicit representation of the score function of ML Estimation and the information matrix.- B. 3 Explicit representation of the quantities used for the asymptotic variance of the PML estimates.- B. 4 Explicit representation of the quantities used for the asymptotic variance of the estimates of the Filling method.- References.- Notation Index.