Uusipaikka | Confidence Intervals in Generalized Regression Models | Buch | 978-1-4200-6027-0 | sack.de

Buch, Englisch, 322 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 589 g

Reihe: Statistics: A Series of Textbooks and Monographs

Uusipaikka

Confidence Intervals in Generalized Regression Models


1. Auflage 2008
ISBN: 978-1-4200-6027-0
Verlag: Chapman and Hall/CRC

Buch, Englisch, 322 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 589 g

Reihe: Statistics: A Series of Textbooks and Monographs

ISBN: 978-1-4200-6027-0
Verlag: Chapman and Hall/CRC


A Cohesive Approach to Regression Models
Confidence Intervals in Generalized Regression Models introduces a unified representation—the generalized regression model (GRM)—of various types of regression models. It also uses a likelihood-based approach for performing statistical inference from statistical evidence consisting of data and its statistical model.
Provides a Large Collection of Models
The book encompasses a number of different regression models, from very simple to more complex ones. It covers the general linear model (GLM), nonlinear regression model, generalized linear model (GLIM), logistic regression model, Poisson regression model, multinomial regression model, and Cox regression model. The author also explains methods of constructing confidence regions, profile likelihood-based confidence intervals, and likelihood ratio tests.
Uses Statistical Inference Package to Make Inferences on Real-Valued Parameter Functions
Offering software that helps with statistical analyses, this book focuses on producing statistical inferences for data modeled by GRMs. It contains numerical and graphical results while providing the code online.

Uusipaikka Confidence Intervals in Generalized Regression Models jetzt bestellen!

Zielgruppe


Academic and Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Introduction. Likelihood-Based Statistical Inference. Generalized Regression Model.General Linear Model.Nonlinear Regression Model. Generalized Linear Model.Binomial and Logistic Regression Models.Poisson Regression Model.Multinomial Regression.Other Generalized Linear Regressions Models.Other Generalized Regression Models. Appendices.


Uusipaikka, Esa



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.