Urban | Agents and Implications of Landscape Pattern | Buch | 978-3-031-40253-1 | www2.sack.de

Buch, Englisch, 327 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 688 g

Urban

Agents and Implications of Landscape Pattern

Working Models for Landscape Ecology
1. Auflage 2023
ISBN: 978-3-031-40253-1
Verlag: Springer International Publishing

Working Models for Landscape Ecology

Buch, Englisch, 327 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 688 g

ISBN: 978-3-031-40253-1
Verlag: Springer International Publishing


This is an ecology textbook focused on key principles that underpin research and management at the landscape scale. It covers (1) agents of pattern (the physical template, biotic processes, and disturbance regimes); (2) scale and pattern (why scale matters, how to ‘scale’ with data, and inferences using landscape pattern metrics); and (3) implications of pattern (for metapopulations, communities and biodiversity, and ecosystem processes). The last two chapters address emerging issues:  urban landscapes, and adapting to climate change. 

This book stems from two graduate-level courses in Landscape Ecology taught at the Nicholas School of the Environment at Duke University. The subject has evolved over time, from a concepts-based overview of what landscape ecology is, to a more applied practicum on how one does landscape ecology. As landscape ecology has matured as a discipline, its perspectives on spatial heterogeneity and scale have begun to permeate into a wide range of other fields including conservation biology, ecosystem management, and ecological restoration. Thus, this textbook will bring students from diverse backgrounds to a common level of understanding and will prepare them with the practical knowledge for a career in conservation and ecosystem management.


Urban Agents and Implications of Landscape Pattern jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1.  The Physical Template of Landscapes

1.1. Introduction

1.2. Gradient Analysis  

1.2.1. Gradient Complexes  

1.3. The Water Balance

1.3.1. A Simple Model: PET = AET + Deficit  

1.4. Estimating Elements of the Template

1.4.1. Temperature  

1.4.2. Radiation  

1.4.3. Precipitation  

1.4.4. Soils  

1.5. Case Study: the Sierra Nevada

1.5.1. The Physical Template of the Sierra Nevada  

1.6. Summary and Conclusions  

References

2.  Biotic Processes as Agents of Pattern  

2.1. Introduction

2.2. The “Pattern and Process” Paradigm

2.3. Coupling of Demographic Processes  

2.4. Interaction with the Physical Template

2.4.1. Coupling Demography and the Physical Template  

2.4.2. Competition along Environmental Gradients  

2.4.3. Illustration: Gradient Response in the Sierra Nevada

2.4.4. The Unit Pattern Revisited

2.5. Dispersal as an Agent of Pattern

2.6. Animals, Pests, and Pathogens  

2.6.1. Animals, Pests and Pathogens as Subtle Agents

2.6.2. Animals as Dramatic Agents  

2.7. Summary and Conclusions  

References  

3.  Disturbances and Disturbance Regimes

3.1. Introduction

3.1.1 Context and Definitions  

3.2. Perspectives and Lessons  

3.2.1. Are Disturbances “Part of the System”?

3.2.2. Interactions, Synergies, and Indirect Effects  

3.2.3. Disturbances and Positive Feedbacks  

3.2.4. Overlapping Disturbances and Legacies  

3.2.5. Heterogeneity in Disturbance and Response  

3.3. Disaggregating Disturbance toward Generality

ix

Table of Contents

3.3.1 A Not-too-General Model

3.3.2. The Fire Regime in the Sierra Nevada  

3.4. Characteristic Dynamics  

3.5. Humans and Disturbance Regimes  

3.5.1. Human Impacts on Natural Disturbances  

3.5.2. Novel Disturbance Regimes  

3.5.3 Human Perception and Landscape Change  

3.6. Agents of Pattern: Reprise  

3.7. Summary and Conclusions  

References 78

4. Scale and Scaling  

4.1. Introduction

4.2. The Importance of Scale in Ecology

4.2.1. Observational Scale as a Filter on Nature

4.2.2. Characteristic Scaling

4.2.3. Sampling Grain and Extent, and Statistical Behavior  

4.3. Scaling Techniques  

4.3.1. Scaling Techniques for Geostatistical Data

4.3.2. Illustration: Scaling of the Sierran Physical Template

4.4. Tactical Scaling

4.4.1. Tactical Targeting of Sampling Scale(s)  

4.4.2. Avoid or Embrace Space?  

4.5. Summary and Conclusions  

References  

5. Inferences on Landscape Pattern

5.1. Introduction

1

5.2. Patchiness and Patches  

5.2.1. Patch Definition  

5.3. Landscape Pattern Metrics  

1

5.3.1. Levels of Analysis  

5.3.2. Components of Pattern  

2

5.3.2 Correlation and Redundancy  

5.3.4. Alternative Framings for Landscape Pattern  

5.4. Interpreting Landscape Metrics  

5.4.1. Neutral Models and Neutral Landscapes  

5.4.2. Neutral Templates for Landscape Processes  

5.4.3. Extending Neutral Models: Agents of Pattern

5.5. Explanatory Models and Inferences  

5.5.1. Approaches to Inferences on Pattern  

5.5.2. Illustrations  

5.5.3. Inferences on Pattern: Area versus Configuration

5.5.4 Inferences on Pattern: the State-of-the-Art

5.6. Summary and Conclusions  

x

Preface

References

6.  Implications of Pattern: Metapopulations  

6.1. Introduction

6.2. Metapopulations in Theory

6.2.1. The Levins Model

6.2.2. The Spreading-of-Risk Model  

6.2.3. The Source-Sink Model

6.2.4. The Incidence Function Model

6.2.5. Commonalities among Metapopulation Models

6.2.6. Characteristic Behaviors of (Model) Metapopulations

6.3. Metapopulations in Practice  

6.3.1. Are there Real Metapopulations in Nature?

6.3.2. Macroscopic Approaches to Metapopulations  

6.4. Network Models of Metapopulations

6.4.1. Graphs and Metapopulations  

6.5. Metapopulations and Connectivity Conservation  

6.5.1. Structural and Functional Connectivity  

6.5.2. Metapopulations and Landscape Genetics

6.6. A Model Template for Applications

6.7. Summary and Conclusions  

References  

Supplement 6.1. Details on the Metapopulation Models

S6.1.1. The Levins Model

S6.1.2. The Spreading-of-Risk Model

S6.2.3. The Source-Sink Model

S6.2.4. The Incidence Function Model

S6.2.5. Notes on the Individual-based Simulators Metapop1  

7.  Communities and Patterns of Biodiversity  

7.1. Introduction

7.2. Island Biogeography and Landscapes

7.2.1. Area and Isolation Effects  

7.2.2. Island Biogeographic Theory and the SLOSS Debate  

7.2.3. A Diversity of Diversities  

7.3. Perspectives on Metacommunities  

7.3.1. A General Framing  

7.3.2. Inferences and Limits to Inference  

7.4. Approaches and Lines of Evidence

7.4.1. The Incidence Matrix and Community Assembly

7.4.2. Metacommunity Models: Variations on a Theme

7.4.3. Species Distribution Models

7.4.4. Multvariate Approaches to Partitioning Beta-diversity  

7.4.5. Lines of Evidence and Complementary Analyses  

7.5. Illustration: Sierran Forests  

xi

Table of Contents

7.5.1. The Perspective of Ordination and Gradient Analysis

7.5.2. Partitioning Beta-diversity

7.6. Managing Metacommunities  

7.7. Summary and Conclusions  

References

Supplement 7.1. Disciplinary Approaches (Details)  

S7.1.1. Incidence Matrices and Community Assembly

S7.1.2. Metacommunity Models: Variations  

S7.1.3. Species Distribution Models  

S7.1.4. Ordination Techniques  

0.                                                                                                                                                                                          IImplications of Pattern for Ecosystems  

8.1. Introduction

8.2. Spatial Heterogeneity and Ecosystems  

8.2.1. Spatial Heterogeneity in the Physical Template

8.2.2. Lateral Fluxes on Landscapes

8.2.3. Landform and Landscape Processes  

8.2.4. Ecosystem Processes and Positive Feedbacks

8.2.5. Ecosystems are both Fast and Slow

8.3. Ecosystems and Landscape Legacies  

8.4. Patch Juxtaposition and Edge Effects  

8.4.1. Edge Effects, Revisited

8.4.2. Edges and Ecosystem Processes: Forest Carbon

8.5. Ecosystems and Meta-ecosystems

8.5.1. Couplings between Systems

8.5.2. Meta-ecosystems, Revisited  

8.5.3. Implications of Meta-ecosystem Structure  

8.6. Summary and Conclusions

References

Urban Landscapes

9.1. Introduction

9.2. Social-Environmental Systems

9.2.1. Approaches to Studying Cities  

9.3. Agents and Implications of Pattern

9.3.1. Agents of Pattern  

9.3.2. Scale and Pattern

9.3.3. Implications of Pattern

9.3.4. Revisiting the Agents-and-Implications Framing

9.4. Urban Landscapes as Laboratories  

9.4.1. The Urban Stream Syndrome  

9.4.2. Cities as Mesocosms for Global Change

9.5. Summary and Conclusions  

References 2

10. Climate Change: Adapting for Resilience  

10.1 Introduction

10.2. Framing Adaptation  

10.2.1. Components of Climate Change

10.2.2. The Perspective of Risk Management  

10.2.3. Options for Response and Adaptation  

10.2.4. Resilience Planning: the Tasks at Hand

10.3. Approaches to Adaptation Planning  

10.3.1. Levels of Activity and Currency of Assessments  

10.3.2. Elements of Adaptation  

10.3.3. A Template for Applications

10.4. Illustrations of Approaches  

10.4.1. NatureServe’s HCCVI

10.4.2. Species Range Shifts implied by Climate Change  

10.4.3. TNC’s Resilient Landscapes Initiative  

10.4.4. The ACT Framework

10.4.5. Complementarity of Approaches

10.5. Collateral Benefits and Leverage

10.5.1. Adaptation Planning and Conservation Practice  

10.5.2. Collateral Benefits

10.5.3. Adaptation and Mitigation

10.6. Summary and Conclusions

References  

Index


Dean Urban is Professor of Landscape Ecology in the Nicholas School of the Environment at Duke University.  His research focuses on devising innovative and rigorous approaches to applications of immediate practical concern. His research tools include habitat classification and mapping, site prioritization, spatial simulation, and integrated assessment. A hallmark of his work is integrated studies that extrapolate our fine-scale empirical understanding of environmental issues to the larger space and time scales of management and policy. Most of his work in landscape ecology has explored the causes and consequences of spatial pattern in forest systems. Specific interests include the implications of climate change for forest ecosystems, and the consequences of land use pattern on forest habitat connectivity and watershed function in developed landscapes. His current research focus is how land use affects the provision of ecosystem services, and in reconciling human institutions with natural systems. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.