- Neu
Upadhyay / Maurya The Bessel Wavelet Transform
Erscheinungsjahr 2025
ISBN: 978-981-969938-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 212 Seiten
Reihe: Industrial and Applied Mathematics
ISBN: 978-981-969938-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the theory of Bessel wavelet transformation involving Hankel transformation. Several properties of the Bessel wavelet transform are discussed in the classical and distributional sense. Other related results of Hankel transform, Hankel convolution and basic results of distributions are also explained. Throughout the book, the reader is assumed to have an understanding of the elements of analysis. Introductory chapters cover the prerequisites for distribution theory. This book is useful for graduate students and researchers in mathematics, physics, engineering and applied sciences.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
An Overview.- On Continuous Bessel Wavelet Transformation Associated with the Hankel-Hausdorff Operator.- Bessel Wavelet Transform on the Spaces with Exponential Growth.- The Bessel Wavelet Convolution Product.- The Relation Between Bessel Wavelet Convolution Product and Hankel Convolution Product Involving Hankel Transform.- Integrability of the Continuum Bessel Wavelet Kernel.- Continuous Bessel Wavelet Transform of Distributions.- Characterizations of the Bessel Wavelet Transform in Besov and Triebel-Lizorkin Type Spaces.- Characterizations of the Inversion Formula of the Continuous Bessel Wavelet Transform of Distributions in.- The Continuous Bessel Wavelet Transform of Distributions in ' -Space.- The Bessel wavelet transform of distributions in ',2 space.




