• Neu
Upadhyay / Maurya | The Bessel Wavelet Transform | E-Book | sack.de
E-Book

E-Book, Englisch, 212 Seiten

Reihe: Industrial and Applied Mathematics

Upadhyay / Maurya The Bessel Wavelet Transform


Erscheinungsjahr 2025
ISBN: 978-981-969938-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 212 Seiten

Reihe: Industrial and Applied Mathematics

ISBN: 978-981-969938-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the theory of Bessel wavelet transformation involving Hankel transformation. Several properties of the Bessel wavelet transform are discussed in the classical and distributional sense. Other related results of Hankel transform, Hankel convolution and basic results of distributions are also explained. Throughout the book, the reader is assumed to have an understanding of the elements of analysis. Introductory chapters cover the prerequisites for distribution theory. This book is useful for graduate students and researchers in mathematics, physics, engineering and applied sciences.

Upadhyay / Maurya The Bessel Wavelet Transform jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Overview.- On Continuous Bessel Wavelet Transformation Associated with the Hankel-Hausdorff Operator.- Bessel Wavelet Transform on the Spaces with Exponential Growth.- The Bessel Wavelet Convolution Product.- The Relation Between Bessel Wavelet Convolution Product and Hankel Convolution Product Involving Hankel Transform.- Integrability of the Continuum Bessel Wavelet Kernel.- Continuous Bessel Wavelet Transform of Distributions.- Characterizations of the Bessel Wavelet Transform in Besov and Triebel-Lizorkin Type Spaces.- Characterizations of the Inversion Formula of the Continuous Bessel Wavelet Transform of Distributions in.- The Continuous Bessel Wavelet Transform of Distributions in ' -Space.- The Bessel wavelet transform of distributions in ',2 space.


Santosh Kumar Upadhyay is Professor at the Department of Mathematical Sciences at the Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India. With more than 27 years of research and teaching experience, his areas of research interest are distribution theory, pseudo-differential operators, and wavelet analysis. With more than 100 papers published in various national and international journals, he has delivered many lectures in national and international conferences, workshops and training programs in India and abroad.

Jay Singh Maurya is Assistant Professor at the Department of Mathematical Sciences at Galgotia University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, India. He has done Ph.D. in Mathematics at the Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India, in 2022, and M.Sc. (Mathematics) from the India Institute of Technology Kanpur, Uttar Pradesh, India. His area of specialization is wavelet analysis, distribution theory, applied harmonic analysis and microlocal analysis. He has devised the construction of the wavelet inversion formula and its associated results on various functional spaces.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.