Buch, Englisch, Band 1, 147 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 284 g
Buch, Englisch, Band 1, 147 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 284 g
Reihe: Pseudo-Differential Operators
ISBN: 978-3-7643-8790-7
Verlag: Springer
(12) (4) Let ? be the unique even non-trivial Dirichlet character mod 12, and let ? be the unique (odd) non-trivial Dirichlet character mod 4. Consider on the line the distributions m (12) ? d (x)= ? (m)? x?, even 12 m?Z m (4) d (x)= ? (m)? x?. (1.1) odd 2 m?Z 2 i?x UnderaFouriertransformation,orundermultiplicationbythefunctionx ? e, the?rst(resp. second)ofthesedistributionsonlyundergoesmultiplicationbysome 24th (resp. 8th) root of unity. Then, consider the metaplectic representation Met, 2 a unitary representation in L (R) of the metaplectic group G, the twofold cover of the group G = SL(2,R), the de?nition of which will be recalled in Section 2: it extends as a representation in the spaceS (R) of tempered distributions. From what has just been said, if g ˜ is a point of G lying above g? G,andif d = d even g ˜ ?1 or d, the distribution d =Met(g˜ )d only depends on the class of g in the odd homogeneousspace?\G=SL(2,Z)\G,uptomultiplicationbysomephasefactor, by which we mean any complex number of absolute value 1 depending only on g ˜. On the other hand, a function u?S(R) is perfectly characterized by its scalar g ˜ productsagainstthedistributionsd ,sinceonehasforsomeappropriateconstants C, C the identities 0 1 g ˜ 2 2 d ,u dg = C u if u is even, 2 0 even L (R) ?\G
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Weyl Calculus and Arithmetic.- Quantization.- Quantization and Modular Forms.- Back to the Weyl Calculus.