Buch, Englisch, 263 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
ISBN: 978-3-030-68954-4
Verlag: Springer International Publishing
After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly.
The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis.
To get the most out of this book, open a Python interpreter and type along with the many code samples.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
Weitere Infos & Material
Introduction.- Basic Language.- Basic Data Structures.- Basic Programming.- File Input/Output.- Dealing with Errors.- Power Python Features to Master.- Advanced Language Features.- Using modules.- Object oriented programming.- Debugging from Python.- Using Numpy – Numerical Arrays in Python.- Data Visualization Using Python.- Bokeh for Web-based Visualization.- Getting Started with Pandas.- Some Useful Python-Fu.- Conclusion.