Buch, Englisch, 328 Seiten, Format (B × H): 178 mm x 254 mm
Unlocking Privacy-Preserving and Cyber Resilience using AI
Buch, Englisch, 328 Seiten, Format (B × H): 178 mm x 254 mm
ISBN: 978-1-041-11510-6
Verlag: Taylor & Francis Ltd
Federated Intelligence: Unlocking Privacy-Preserving and Cyber Resilience using AI in the Finance Industry" is an edited volume designed to explores how Federated Intelligence can help the finance industry defend against cyber threats, detect fraud, and comply with regulations, all while keeping sensitive financial data secure and distributed.
This book provides a comprehensive roadmap for integrating Federated Learning (FL) and AI-driven cyber security into financial ecosystems. Unlike conventional AI systems that require data centralization, Federated Intelligence enables financial institutions to collaborate securely, train powerful AI models, and combat cyber threats.
Zielgruppe
Academic, Postgraduate, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit Schadprogramme (Viren, Trojaner etc.)
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Finanzsektor & Finanzdienstleistungen: Allgemeines
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Netzwerksicherheit
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit Kryptographie, Datenverschlüsselung
- Mathematik | Informatik EDV | Informatik Digital Lifestyle Online Banking & Finance
Weitere Infos & Material
Chapter 1: Regulatory Challenges and Compliance in Federated Learning for Financial Applications. Chapter 2: The Mechanism of Federated Learning. Chapter 3: Federated Learning for Fraud Detection and Risk Mitigation in Financial Systems. Chapter 4: Cybersecurity Vulnerabilities in Federated Learning. Chapter 5: Zero Trust Principles in AI-Driven Architectures: Security by Design. Chapter 6: Data Poisoning and Adversarial Attacks in Federated Learning. Chapter 7: Securing Digital Payments and Transactions Using Federated Learning. Chapter 8: Blockchain and Federated Learning. Chapter 9: Cyber Resilience Through Adaptive Federated Learning. Chapter 10: Quantum Threats and Federated Learning. Chapter 11: Next-Gen and Autonomous Federated Systems. Chapter 12: A Roadmap for Federated Learning Adoption. Chapter 13: Cyber Resilience in Sports Organisations: Federal Learning for Financial, Fan, and Athlete Data Security.




