Turchin | Complex Population Dynamics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 35, 472 Seiten

Reihe: Monographs in Population Biology

Turchin Complex Population Dynamics

A Theoretical/Empirical Synthesis
Course Book
ISBN: 978-1-4008-4728-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

A Theoretical/Empirical Synthesis

E-Book, Englisch, Band 35, 472 Seiten

Reihe: Monographs in Population Biology

ISBN: 978-1-4008-4728-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Complex Population Dynamics".

Turchin Complex Population Dynamics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xi

Mathematical Symbols xv

Part I: THEORY

1. Introduction 3

1.1 At the Sources 3

1.1.1 The Puzzle of Population Cycles 3

1.1.2 Modeling Nature 4

1.1.3 The Balance of Nature 5

1.2 General Philosophy of the Approach 6

1.2.1 Defining the Phenomenon to Be Explained 8

1.2.2 Formalizing Hypotheses as Mathematical Models 11

1.2.3 Contrasting Models with Data 14

2. Population Dynamics from First Principles 17

2.1 Introduction 17

2.2 Exponential Growth 19

2.2.1 Derivation of the Exponential Model 20

2.2.2 Comparison with the Law of Inertia 22

2.2.3 "Laws": Postulates, Theorems, Empirical Generalizations? 25

2.3 Self-Limitation 26

2.3.1 Upper and Lower Density Bounds 26

2.3.2 Formalizing the Notion of Self-Limitation 27

2.3.3 The Logistic Model 29

2.4 Consumer-Resource Oscillations 30

2.4.1 Three More Postulates 31

2.4.2 The Lotka-Volterra Predation Model 33

2.5 Process Order 36

2.6 Synthesis 44

3. Single-Species Populations 47

3.1 Models without Population Structure 47

3.1.1 Continuous-Time Models 48

3.1.2 Discrete-Time Models 52

3.1.3 Delayed Differential Models 56

3.2 Exogenous Drivers 58

3.2.1 Stochastic Variation 60

3.2.2 Deterministic Exogenous Factors 61

3.3 Age-and Stage-Structured Models 64

3.3.1 Mathematical Frameworks 65

3.3.2 An Example: Flour Beetle Dynamics 68

3.4 Second-Order Models 70

3.4.1 Maternal Effect Hypothesis 70

3.4.2 Kin Favoritism Model 72

3.5 Synthesis 76

4. Trophic Interactions 78

4.1 Responses of Predators to Fluctuations in Prey Density 79

4.1.1 Functional Response 79

4.1.2 Aggregative Response 88

4.1.3 Numerical Response 90

4.2 Continuous-Time Models 93

4.2.1 Generalized Lotka-Volterra Models 94

4.2.2 Models Not Conforming to the LV Framework 99

4.2.3 Anatomy of a Predator-Prey Cycle 102

4.2.4 Generalist Predators 104

4.3 Discrete-Time Models: Parasitoids 108

4.3.1 Functional and Numerical Responses 109

4.3.2 Dynamical Models 111

4.4 Grazing Systems 112

4.4.1 Grazer's Functional Response 113

4.4.2 Dynamics of Vegetation Regrowth 117

4.4.3 Dynamics of Grazer-Vegetation Interactions 120

4.4.4 Plant Quality 123

4.5 Pathogens and Parasites 127

4.5.1 Transmission Rate 127

4.5.2 Microparasitism Models 128

4.5.3 Macroparasitism Models 131

4.6 Tritrophic Models 133

4.7 Synthesis 136

5. Connecting Mathematical Theory to Empirical Dynamics 137

5.1 Introduction 137

5.2 Qualitative Types of Deterministic Dynamics 139

5.2.1 Attractors 139

5.2.2 Sensitive Dependence on Initial Conditions 140

5.3 Population Dynamics in the Presence of Noise 146

5.3.1 Simple Population Dynamics 146

5.3.2 Stable Periodic Oscillations 147

5.3.3 Chaotic Oscillations 148

5.3.4 Quasi-Chaotic Oscillations 151

5.3.5 Regular Exogenous Forcing 153

5.3.6 Synthesis 153

5.4 Population Regulation 154

5.4.1 Definition of Density Dependence 155

5.4.2 Regulation: Evolution of the Concept 156

5.4.3 The Stationarity Definition of Regulation 156

5.4.4 Beyond Stationarity: Stochastic Boundedness 157

5.4.5 Synthesis 158

Part II: DATA

6. Empirical Approaches: An Overview 163

6.1 Introduction 163

6.2 Analysis of Population Fluctuations 164

6.2.1 The Structure of Density Dependence 164

6.2.2 Probes: Quantitative Measures of Time-Series Patterns 165

6.2.3 Phenomenological versus Mechanistic Approaches 167

6.3 Experimental Approaches 168

7. Phenomenological Time-Series Analysis 173

7.1 Basics 173

7.1.1 Variance Decomposition 173

7.1.2 Data Manipulations Prior to Analysis 175

7.1.3 Diagnostic Tools 178

7.2 Fitting Models to Data 183

7.2.1 General Framework 183

7.2.2 Choosing the Base Lag 186

7.2.3 Functional Forms 188

7.2.4 Model Selection by Cross-Validation 191

7.3 Synthesis 195

8. Fitting Mechanistic Models 197

8.1 Model Selection 198

8.2 Analysis of Ancillary Data 200

8.3 One-Step-Ahead Prediction 201

8.4 Trajectory Matching 203

8.5 Fitting by Nonlinear Forecasting 205

Part III: CASESTUDIES

9. Larch Budmoth 213

9.1 Introduction 213

9.2 Analysis of Time-Series Data 217

9.3 Hypotheses and Models 220

9.3.1 Plant Quality 220

9.3.2 Parasitism 229

9.3.3 Putting It All Together: A Parasitism-Plant Quality Model 235

9.4 Synthesis 237

10. Southern Pine Beetle 239

10.1 Introduction 239

10.2 Analysis of Time-Series Data 240

10.3 Hypotheses and Models 243

10.3.1 General Review of Hypotheses 243

10.3.2 Interaction with Hosts 247

10.3.3 Interaction with Parasitoids 253

10.3.4 The Predation Hypothesis 255

10.4 An Experimental Test of the Predation Hypothesis 259

10.4.1 Rationale 259

10.4.2 Results 264

10.5 Synthesis 271

11. Red Grouse 272

11.1 Numerical Patterns 273

11.2 Hypotheses and Models 281

11.2.1 Overview 281

11.2.2 Parasite-Grouse Hypothesis 282

11.2.3 Kin Favoritism Hypothesis 285

11.3 Experiments 289

11.3.1 Density Manipulation 289

11.3.2 Parasite Manipulation 291

11.4 Synthesis 294

12. Voles and Other Rodents 296

12.1 Introduction 296

12.2 Analysis of Time-Series Data 297

12.2.1 Methodological Issues 297

12.2.2 Numerical Patterns 301

12.3 Hypotheses and Models 310

12.3.1 Maternal Effect Hypothesis 311

12.3.2 Interaction with Food 316

12.3.3 Predation 317

12.4 Fitting the Predation Model by NLF 321

12.5 Lemmings 325

12.5.1 Numerical Patterns 326

12.5.2 Testing Alternative Trophic Hypotheses 328

12.5.3 Lemming-Vegetation Dynamics at Barrow 331

12.6 Synthesis 335

12.6.1 Summary of Findings 335

12.6.2 Towar a General Trophic Theory of Rodent Dynamics 339

13. Snowshoe Hare 344

13.1 Introduction 344

13.2 Numerical Patterns 345

13.3 Models 349

13.4 Experiments 356

13.5 Synthesis 362

14. Ungulates 365

14.1 Introduction 365

14.2 Interaction with Food 368

14.3 Interaction with Predators 371

14.4 Numerical Dynamics 376

14.5 Synthesis 381

15. General Conclusions 383

15.1 What Mechanisms Drive Oscillations in Nature? 383

15.2 Structure of Density Dependence 386

15.3 What about Chaos? 390

15.4 Population Ecology: A Mature Science 392

Glossary 397

References 405

Index 437


Peter Turchin is Professor of Ecology and Evolutionary Biology at the University of Connecticut. He is the author of Quantitative Analysis of Movement and more than sixty scientific articles, including several in Nature and Science.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.