Tunstall / von Werra / Wolf | Natural Language Processing mit Transformern | Buch | 978-3-96009-202-5 | www2.sack.de

Buch, Deutsch, 432 Seiten, Format (B × H): 165 mm x 240 mm

Reihe: Animals

Tunstall / von Werra / Wolf

Natural Language Processing mit Transformern

Sprachanwendungen mit Hugging Face erstellen
Übersetzung der Revised Auflage 2022
ISBN: 978-3-96009-202-5
Verlag: O'Reilly

Sprachanwendungen mit Hugging Face erstellen

Buch, Deutsch, 432 Seiten, Format (B × H): 165 mm x 240 mm

Reihe: Animals

ISBN: 978-3-96009-202-5
Verlag: O'Reilly


Leistungsfähige State-of-the-Art-Sprachanwendungen mit vortrainierten Transformer-Modellen
  • Transformer haben die NLP-Welt im Sturm erobert: Erhalten Sie einen fundierten und praxisnahen Überblick über die wichtigsten Methoden und Anwendungen im aktuellen NLP
  • Das Buch wurde von den Gründern von Hugging Face, der Plattform für vortrainierte Transformer-Modelle für TensorFlow und PyTorch, verfasst
  • Hands-On: Jeder Programmierschritt kann in Jupyter Notebooks nachvollzogen werden

Transformer liefern hervorragende Ergebnisse bei der maschinellen Sprachverarbeitung und haben sich in den letzten Jahren zur vorherrschenden Architektur im Natural Language Processing (NLP) entwickelt. Dieses Praxisbuch zeigt Data Scientists und Programmierer*innen, wie sie NLP-Modelle mit Hugging Face Transformers, einer Python-basierten Deep-Learning-Bibliothek, trainieren und skalieren. Transformer kommen beispielsweise beim maschinellen Schreiben von Nachrichtenartikeln, bei der Verbesserung von Google-Suchanfragen oder bei Chatbots zum Einsatz.

Lewis Tunstall, Leandro von Werra und Thomas Wolf, die die Transformers-Bibliothek von Hugging Face mitentwickelt haben, erklären in diesem Buch, wie Transformer-basierte Modelle funktionieren und wie Sie sie in Ihre Anwendungen integrieren. Sie erfahren, wie Transformer für eine Vielzahl von Aufgaben erfolgreich eingesetzt werden können.

  • Erstellen, debuggen und optimieren Sie Transformer-Modelle für zentrale NLP-Aufgaben wie Textklassifizierung, Named Entity Recognition oder Question Answering
  • Lernen Sie, wie Transformer für sprachenübergreifendes Transfer Learning verwendet werden
  • Wenden Sie Transformer auf reale Anwendungsfälle an, bei denen nur auf wenige gelabelte Daten zurückgegriffen werden kann
  • Optimieren Sie Transformer-Modelle für das Deployment mit Techniken wie Distillation, Pruning und Quantisierung
  • Trainieren Sie Transformer von Grund auf und lernen Sie, wie sie auf mehreren GPUs und verteilten Umgebungen skalieren
Tunstall / von Werra / Wolf Natural Language Processing mit Transformern jetzt bestellen!

Zielgruppe


- Data Scientists
- Machine Learning Engineers

Weitere Infos & Material


von Werra, Leandro
Leandro von Werra ist Machine Learning Engineer im Open-Source-Team von Hugging Face. Er konzentriert sich hauptsächlich auf Modelle, die Code generieren können, und auf die Zusammenarbeit mit der Community.

Wolf, Thomas
Thomas Wolf ist Chief Science Officer und Mitgründer von Hugging Face. Sein Team hat sich der Aufgabe verschrieben, die KI-Forschung voranzutreiben und sie weiter zu demokratisieren.

Tunstall, Lewis
Lewis Tunstall ist Machine Learning Engineer bei Hugging Face. Der Schwerpunkt seiner Arbeit liegt derzeit auf der Entwicklung von Tools für die NLP-Community und darauf, Menschen zu schulen, diese effektiv zu nutzen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.