Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Englisch, 165 Seiten, eBook
Türke Efficient Methods for WCDMA Radio Network Planning and Optimization
2008
ISBN: 978-3-8350-5456-1
Verlag: Deutscher Universitätsverlag
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 165 Seiten, eBook
Reihe: Advanced Studies Mobile Research Center Bremen
ISBN: 978-3-8350-5456-1
Verlag: Deutscher Universitätsverlag
Format: PDF
Kopierschutz: 1 - PDF Watermark
Ulrich Türke introduces innovative models and algorithms for the evaluation of WCDMA/UMTS network performance. He establishes an advanced snapshot analysis method which allows the efficient and accurate analysis of large radio networks. The author develops two statistical evaluation methods which furnish quick approximations of relevant results from snapshot simulations. Finally, he discusses the application of these methods to automatic network optimization. The majority of the developed strategies are successfully applied in a commercial radio network planning and optimization tool.
Dr. Ulrich Türke promovierte bei Prof. Dr. Carmelita Görg am Fachbereich für Physik und Elektrotechnik der Universität Bremen. Er ist als Experte für Funknetzplanung und -optimierung bei der atesio GmbH in Berlin tätig.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Abstract;8
3;Contents;10
4;List of Abbreviations;14
5;List of Symbols;18
6;List of Figures;22
7;List of Tables;25
8;Chapter 1 Introduction;26
9;Chapter 2 The WCDMA Air Interface;30
9.1;2.1 UMTS Network Architecture;31
9.2;2.2 UTRA-FDD Protocols;33
9.3;2.3 Radio Resource Management;44
10;Chapter 3 Modeling the Wireless Transmission Channel;50
10.1;3.1 Macro Path Loss Prediction;51
10.2;3.2 Shadow Fading;56
10.3;3.3 Fast Fading;60
10.4;3.4 Antenna Modeling;61
10.5;3.5 Signal and Interference Levels;64
11;Chapter 4 Monte-Carlo Snapshot Analysis;70
11.1;4.1 The Monte-Carlo Method;71
11.2;4.2 Simple Analysis Example;74
11.3;4.3 Variance Reduction Techniques;80
11.4;4.4 Conclusions;91
12;Chapter 5 Monte-Carlo Snapshot Analysis for WCDMA Network Performance Evaluation;92
12.1;5.1 Basic Analysis Loop;92
12.2;5.2 Snapshot Generation;93
12.3;5.3 Modeling of Dynamics;95
12.4;5.4 System Constraints and Limits;96
12.5;5.5 Cell Based Radio Performance Evaluation;98
12.6;5.6 Resource Scheduling;106
12.7;5.7 Method Extensions;117
12.8;5.8 Application of Variance Reduction Techniques;118
12.9;5.9 Validation of Results;128
12.10;5.10 Conclusions;130
13;Chapter 6 Analytical Performance Evaluation;132
13.1;6.1 Static Load Estimation;133
13.2;6.2 Statistical Load Estimation;141
13.3;6.3 Extended Statistical Load Estimation;145
13.4;6.4 Evaluation of Per Pixel Quantities;152
13.5;6.5 Practical Implementation;160
13.6;6.6 Conclusions;161
14;Chapter 7 Automated Network Optimization;162
14.1;7.1 Optimization Parameters and Targets;162
14.2;7.2 Optimization based on Fast Heuristic;163
14.3;7.3 Search Based Optimization;167
14.4;7.4 Application Example;175
14.5;7.5 Conclusions;177
15;Chapter 8 Conclusions and Outlook;180
16;Appendix A Generating Correlated Random Variables;182
17;Bibliography;184
The WCDMA Air Interface.- Modeling the Wireless Transmission Channel.- Monte-Carlo Snapshot Analysis.- Monte-Carlo Snapshot Analysis for WCDMA Network Performance Evaluation.- Analytical Performance Evaluation.- Automated Network Optimization.- Conclusions and Outlook.
Chapter 2 The WCDMA Air Interface (p. 5)
WCDMA is the most widely adopted air interface standard for third generation (3G) mobile networks. 3G networks have been designed to supersede second generation (2G) networks, i.e. GSM (Europe and large parts of the world), cdmaOne (Americas), D-AMPS (Americas), and PDC (Japan). The main advances of 3G systems compared with 2G systems are [HT04]:
• Higher user peak data rates (several Mbps).
• Dynamic adaptation of user data rates ("bandwidth on demand").
• Asymmetric uplink and downlink data rates to fit usual Packet-Switched (PS) traffic characteristics, e.g. web browsing, ftp downloads.
• Support of Quality of Service (QoS) differentiation, e.g. in terms of error rates and delay.
• Multiplexing of services with different quality and data rate requirements on a single connection.
• Improved spectrum efficiency (higher system throughput per unit of allocated frequency spectrum).
Work on the development of 3G systems started in 1992 by the International Telecommunications Union (ITU). Original target of the ITU activities was to define one global International Mobile Telecommunications-2000 (IMT-2000) standard that operates in a common frequency band around 2 GHz in the largest world markets for mobile communication, namely USA, Europe, and Asia. In the USA, however, the frequency band considered by the ITU for IMT-2000 was already occupied by 2G networks (GSM 1900) and for satellite communication (in the 2.1 GHz band).
The 3G networks currently being deployed in the USA hence partly reuse the frequency spectrum originally auctioned for GSM 1900 but in particular utilize different frequencies bands. This drives the need for several types of base station equipment and costly multi-band user equipment to provide global handsets. This is similar to the present situation in 2G networks that ITU intended to overcome with 3G.
Several competing standards have been defined by the standardization bodies in the IMT- 2000 framework. In 1999 the ITU approved five air interfaces for IMT-2000. The most relevant of these are WCDMA, CDMA2000, TD-SCDMA, and EDGE as a direct successor of GSM. CDMA2000 is the successor of cdmaOne in the USA. CDMA2000 utilizes a smaller frequency band than WCDMA to simplify the usage of the fragmented spectrum. TD-SCDMA is a standard to be deployed in China.
WCDMA is the air interface used by the Universal Mobile Telecommunications System (UMTS), which is specified and brought into ITU by the 3rd Generation Partnership Project (3GPP). The most important standardization bodies contribute to 3GPP, i.e. ARIB (Japan), ATIS (USA), CCSA (China), ETSI (Europe), TTA (Korea), and TTC (Japan). WCDMA is called Universal Terrestrial Radio Access (UTRA) within 3GPP. It covers two modes of operation, that is UTRA-FDD (Frequency Division Duplex) and UTRATDD (Time Division Duplex).
UTRA-FDD uses paired frequency bands for Uplink (UL) and Downlink (DL) data transmission, whereas UTRA-TDD utilizes a common frequency band for both directions and adjusts the time domain portion assigned for UL and DL transmission dynamically.