Tsang / Wang | Low Carbon Stabilization and Solidification of Hazardous Wastes | Buch | 978-0-12-824004-5 | sack.de

Buch, Englisch, 590 Seiten, Format (B × H): 214 mm x 273 mm, Gewicht: 1602 g

Tsang / Wang

Low Carbon Stabilization and Solidification of Hazardous Wastes


Erscheinungsjahr 2021
ISBN: 978-0-12-824004-5
Verlag: Elsevier Science Publishing Co Inc

Buch, Englisch, 590 Seiten, Format (B × H): 214 mm x 273 mm, Gewicht: 1602 g

ISBN: 978-0-12-824004-5
Verlag: Elsevier Science Publishing Co Inc


Low Carbon Stabilization and Solidification of Hazardous Wastes details sustainable and low-carbon treatments for addressing environmental pollution problems, critically reviewing low-carbon stabilization/solidification technologies. This book presents the latest state-of-the-art knowledge of low-carbon stabilization/solidification technologies to provide cost-effective sustainable solutions for real-life environmental problems related to hazardous wastes including contaminated sediments. As stabilization/solidification is one of the most widely used waste remediation methods for its versatility, fast implementation and final treatment of hazardous waste treatment, it is imperative that those working in this field follow the most recent developments.

Low Carbon Stabilization and Solidification of Hazardous Wastes is a necessary read for academics, postgraduates, researchers and engineers in the field of environmental science and engineering, waste management, and soil science, who need to keep up to date with the most recent advances in low-carbon technologies. This audience will develop a better understanding of these low-carbon mechanisms and advanced characterization technologies, fostering the future development of low-carbon technologies and the actualization of green and sustainable remediation.

Tsang / Wang Low Carbon Stabilization and Solidification of Hazardous Wastes jetzt bestellen!

Zielgruppe


<p>Academics, postgraduates and researchers in environmental science and environmental engineering, and waste management</p>

Weitere Infos & Material


Part I Overview of environmental remediation and stabilization/solidification 1. Sustainable waste management 2. Overview of low-carbon stabilization/solidification

Part II Low-carbon stabilization/solidification (S/S) of contaminated soil and sediment 3. Green cementitious materials for S/S 4. Natural or organophilic clay for S/S 5. Nanomaterials for S/S 6. Biochar for S/S 7. S/S of contaminated river/lake sediment 8. S/S of contaminated marine sediment

Part III Low-carbon stabilization/solidification of industrial waste 9. S/S of waste incineration fly ash and bottom ash 10. S/S of waste incineration bottom ash 11. S/S of industrial sludge (electroplating) 12. S/S of industrial sludge (mining) 13. S/S of sewage sludge ash 14. Remediation of mine waste 15. Remediation of tailing waste 16. Remediation of chemical waste 17. Utilization of waste slag 18. Utilization of coal fly ash and bottom ash 19. Utilization of contaminated bio-waste

Part IV Low-carbon stabilization/solidification of radioactive waste 20. Cement-based S/S of radioactive waste 21. Glass-based S/S of radioactive waste 22. Ceramic-based S/S of radioactive waste 23. Chemical enhanced S/S of radioactive waste

Part V Future prospects 24. Novel materials for S/S technologies 25. Advanced characterization for S/S technologies 26. New lab-scale analytical methods for S/S technologies 27. Life cycle analysis of S/S technologies 28. Cost-benefit analysis of S/S technologies 29. Sustainable waste management and circular economy 30. Future research directions for sustainable remediation


Tsang, Daniel C. W.
Daniel C.W. Tsang is a Professor in the Department of Civil and Environmental Engineering at the Hong Kong University of Science and Technology and Pao Yue-Kong Chair Professor at the State Key Laboratory of Clean Energy Utilization of Zhejiang University in China. He was a Professor and MSc Programme Leader at the Hong Kong Polytechnic University, a Visiting Professor at the University of Queensland in Australia and Chulalongkorn University in Thailand, a Visiting Scholar at Stanford University in the US, an IMETE Scholar at Ghent University in Belgium, and a postdoctoral fellow at Imperial College London in the UK. With over 20 years of R&D experience, he has published more than 600 articles in top-tier journals and has been recognized among Stanford University's Top 2% Scientists and Clarivate's Highly Cited Researchers in the fields of Engineering and Environment & Ecology. His team is dedicated to developing green technologies for long-term decarbonization and promoting resource circularity and sustainable development. He serves as the Editor-in-Chief of npj Materials Sustainability (Springer Nature), Chairman of the Hong Kong Waste Management Association (2023-2025), and Chairman of the Waste Management Subcommittee of the Advisory Council on the Environment (2023 & 2024) of the Hong Kong SAR Government.

Wang, Lei
Lei Wang is a professor at Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment. His primary research areas are regional ecological environment assessment and organic industry development. He has currently published over 30 articles in journals including Natrue Geoscience, Geoderma, Agriculture, Ecosystems & Environment, and others. Additionally, he currently holds the position of Deputy Director of the Soil Ecology Committee of the Chinese Soil Science Society, and he is also a member of the Carbon Peak and Carbon Neutrality Committee of the Chinese Society for Environmental Sciences.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.