Buch, Englisch, 589 Seiten, Format (B × H): 178 mm x 254 mm
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Using SAS Enterprise Miner
Buch, Englisch, 589 Seiten, Format (B × H): 178 mm x 254 mm
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
ISBN: 978-0-367-75196-8
Verlag: Taylor & Francis Ltd
Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders.
Designed as a guiding companion for both beginners and experienced practitioners, this book targets a wide audience, including students, lecturers, researchers, and industry professionals from various backgrounds.
Zielgruppe
Adult education, Further/Vocational Education, General, Professional Practice & Development, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Warehouse
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
Weitere Infos & Material
Part I: Introduction to Data Mining. 1. Introduction to Data Mining and Data Science. 2. Data Mining Processes, Methods, and Software. 3. Data Sampling and Partitioning. 4. Data Visualization and Exploration. 5. Data Modification. Part II: Data Mining Methods. 6. Model Evaluation. 7. Regression Methods. 8. Decision Trees. 9. Neural Networks. 10. Ensemble Modeling. 11. Presenting Results and Writing Data Mining Reports. 12. Principal Component Analysis. 13. Cluster Analysis. Part III: Advanced Data Mining Methods. 14. Random Forest. 15. Gradient Boosting. 16. Bayesian Networks.