Buch, Englisch, 518 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g
Reihe: Classics in Mathematics
Buch, Englisch, 518 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g
Reihe: Classics in Mathematics
ISBN: 978-3-540-41160-4
Verlag: Springer Berlin Heidelberg
From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student." --New Zealand Mathematical Society, 1985
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Introduction.- I. Linear Equations.- 2. Laplace’s Equation.- 3. The Classical Maximum Principle.- 4. Poisson’s Equation and the Newtonian Potential.- 5. Banach and Hubert Spaces.- 6. Classical Solutions; the Schauder Approach.- 7. Sobolev Spaces.- 8. Generalized Solutions and Regularity.- 9. Strong Solutions.- II. Quasilinear Equations.- 10. Maximum and Comparison Principles.- 11. Topological Fixed Point Theorems and Their Application.- 12. Equations in Two Variables.- 13. Hölder Estimates for the Gradient.- 14. Boundary Gradient Estimates.- 15. Global and Interior Gradient Bounds.- 16. Equations of Mean Curvature Type.- 17. Fully Nonlinear Equations.- Epilogue.- Notation Index.




