E-Book, Englisch, 600 Seiten
Reihe: Plastics Design Library
Troughton Handbook of Plastics Joining
2. Auflage 2008
ISBN: 978-0-8155-1976-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A Practical Guide
E-Book, Englisch, 600 Seiten
Reihe: Plastics Design Library
ISBN: 978-0-8155-1976-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The new edition of this bestselling reference provides fully updated and detailed descriptions of plastics joining processes, plus an extensive compilation of data on joining specific materials. The volume is divided into two main parts: processes and materials. The processing section has 18 chapters, each explaining a different joining technique. The materials section has joining information for 25 generic polymer families. Both sections contain data organized according to the joining methods used for that material. - A significant and extensive update from experts at The Welding Institute - A systematic approach to discussing each joining method including: process, advantages and disadvantages, applications, materials, equipment, joint design, and welding parameters - Includes international suppliers' directory and glossary of key joining terms - Includes new techniques such as flash free welding and friction stir welding - Covers thermoplastics, thermosets, elastomers, and rubbers.
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. Heated Tool Welding
1.1. Process Description
Heated tool welding, also known as hot plate, mirror, platen, butt or butt fusion welding, is a widely used technique for joining injection molded components or extruded profiles. The process uses a heated metal plate, known as the hot tool, hot plate, or heating platen, to heat and melt the interface surfaces of the thermoplastic parts. Once the interfaces are sufficiently melted or softened, the hot plate is removed and the components are brought together under pressure to form the weld. An axial load is applied to the components during both the heating and the joining/cooling phases of the welding process. Welding can be performed in either of two ways: welding by pressure or welding by distance. Both processes consist of four phases, shown in the pressure versus time diagram in Fig. 1.1. Figure 1.1. Pressure vs. time curve showing the four phases of heated tool welding. (Source: TWI Ltd) In welding by pressure, the parts are brought into contact with the hot tool in Phase I, and a relatively high pressure is used to ensure complete matching of the part and tool surfaces. Heat is transferred from the hot tool to the parts by conduction, resulting in a local temperature increase over time. When the melting temperature of the plastic is reached, molten material begins to flow. This melting removes surface imperfections, warps, and sinks at the joint interface and produces a smooth edge. Some of the molten material is squeezed out from the joint surface due to the applied pressure. In Phase II, the melt pressure is reduced, allowing further heat to soak into the material and the molten layer to thicken; the rate at which the thickness increases is determined by the heat conduction through the molten layer. Thickness increases with heating time—the time that the part is in contact with the hot tool. When a sufficient melt thickness has been achieved, the part and hot tool are separated. This is Phase III, the changeover phase, in which the pressure and surface temperature drop as the tool is removed. The duration of this phase should be as short as possible (ideally, less than 3 seconds) to prevent premature cooling of the molten material. A thin, solid “skin” may form on the joint interface if the changeover time is too long, affecting the weld quality. In Phase IV, the parts are joined under pressure, causing the molten material to flow outward laterally while cooling and solidifying. Intermolecular diffusion during this phase creates polymeric chain entanglements that determine joint strength. Because the final molecular structure and any residual stresses are formed during cooling, it is important to maintain pressure throughout the cooling phase in order to prevent warping. Joint microstructure, which affects the chemical resistance and mechanical properties of the joint, develops during this phase [1, 2]. Welding by pressure requires equipment in which the applied pressure can be accurately controlled. A drawback of this technique is that the final part dimensions cannot be controlled directly; variations in the melt thickness and sensitivity of the melt viscosities of thermoplastics to small temperature changes can result in unacceptable variations in part dimensions. In welding by distance, also called displacement controlled welding, the process described earlier is modified by using rigid mechanical stops to control the welding process and the part dimensions. Figure 1.2 shows the process steps. Figure 1.2. The heated tool (welding by distance) process. (Source: Forward Technology) In Step 1, the parts are aligned in holding fixtures; tooling and melt stops are set at specified distances on the holding fixture and hot tool (heating platen), respectively. The hot tool is inserted between the parts in Step 2, and the parts are pressed against it in Step 3. Phase I, as described for welding by pressure, then takes place. The material melts and flows out of the joint interface, decreasing part length until, in this case, the melt stops meet the tooling stops. Melt thickness then increases (Phase II) until the hot plate is removed in Step 4, the changeover phase (Phase III). The parts are then pressed together in Step 5 (Phase IV), forming a weld as the plastic cools; tooling stops inhibit melt flow. The welded part is then removed in Step 6. 1.2. Advantages and Disadvantages
Heated tool welding is a simple economical technique in which high strength, hermetic welds can be achieved with both large and small parts. Joints with flat, curved, or complex geometries can be welded, and surface irregularities can be smoothed out during the heating phases. Dissimilar materials that are compatible but have different melting temperatures can be welded using hot tools at different temperatures. The welding process can be easily automated with full monitoring of the processing parameters. Since the process does not introduce any foreign materials into the joint, defective welded parts can be easily recycled [1, 3]. The major disadvantage of the process is the long cycle time compared with other common techniques such as vibration or ultrasonic welding. Welding times range from 10–20 seconds for small parts, and up to 30 minutes for large pipes. For the welding of smaller parts, production efficiency can be improved by the use of multiple-cavity tools, allowing simultaneous welding of two or more components. A second disadvantage is the high temperatures required for melting. Heat is not as localized as in vibration welding, and in some cases can cause plastic degradation or sticking to the hot plate. When the molten surfaces are pressed against each other, weld flash is produced. For certain applications, this must be hidden or removed for cosmetic reasons. In welding by pressure, part dimensions cannot always be controlled reliably due to variations in the molten film thickness and sensitivity of the melt viscosities of thermoplastics to small temperature changes [4]. 1.3. Applications
Hot tool welding can be used to join parts as small as a few centimeters to parts as large as 1600 mm (63 inches) in diameter, such plastics pipes (Section 1.9.2). It can also be used for the continuous welding of lining membranes (Section 1.9.3). The heated tool welding method is widely used in the automotive sector, where one of the most common applications is the welding of vehicle tail lights and indicators (Fig. 1.3). The housing, usually made of acrylonitrile-butadiene-styrene (ABS) is welded to the colored lens which is made from either polymethylmethacrylate (PMMA) or polycarbonate (PC). These represent one of the few material combinations that are compatible for heated tool welding. ABS to PMMA lights can be welded using a single hot plate, because their melting points are similar. Dual hot plates are necessary for ABS to PC. Vacuum fixtures with suction cups are employed to limit any scuffing to the lens. Figure 1.3. Hot plate welded vehicle indicator lamps. (Source: Branson Ultrasonics Corp.) Custom-built heated tool welding machines are used in the manufacture of blow-molded high density polyethylene (HDPE) fuel tanks. These can require as many as 34 parts to be welded onto the tank, such as clips, filler necks, vent lines, and brackets. Other automotive components welded by heated tool include battery casings, carburetor floats, coolant and screen wash reservoirs, and ventilation ducts. Domestic appliance components welded by heated tool include dish washer spray-arms, soap powder boxes (Fig. 1.4), and steam iron reservoirs. Figure 1.4. Hot plate welded soap powder housing. (Source: Branson Ultrasonics Corp.) Miscellaneous items welded by the process include lids on HDPE barrels, sharps boxes for medical needle disposal, polypropylene (PP) transport pallets, and the corners of polyvinyl chloride (PVC) window frames. 1.4. Materials
Heated tool welding is suitable for almost any thermoplastic, but is most often used for softer, semicrystalline thermoplastics such as PP and PE. It is usually not suitable for nylon or high molecular weight materials. The temperature of the molten film can be controlled by regulating the hot tool temperature so that plastics that undergo degradation at temperatures only slightly above the...