Buch, Englisch, 1454 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 2797 g
Buch, Englisch, 1454 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 2797 g
ISBN: 978-1-4939-7914-1
Verlag: Springer
"The Mathematica GuideBook for Symbolics" (code and text fully tailored for Mathematica 5.1) deals with Mathematica's symbolic mathematical capabilities. Structural and mathematical operations on single and systems of polynomials are fundamental to many symbolic calculations and they are covered in considerable detail. The solution of equations and differential equations, as well as the classical calculus operations (differentiation, integration, summation, series expansion, limits) are exhaustively treated. Generalized functions and their uses are discussed. In addition, this volume discusses and employs the classical orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathematics power, a large variety of problems from mathematics and phyics are discussed.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
Weitere Infos & Material
Introduction and Orientation.- I. Symbolic computations: Remarks.- Manipulation of polynomials.- Manipulations of rational functions of polynomials.- Manipulations of trigonometric expressions.- Systems of linear and nonlinear equations.- Classical analysis.- Differential equations.- Integral transforms and generalized functions.- Three applications.- Overview.- II Classical orthogonal polynomials: Remarks.- General properties of orthogonal polynomials.- Hermite polynomials.- Jacobi polynomials.- Gegenbauer polynomials.- Laguerre polynomials.- Legendre polynomials.- Chebyshev polynomials T.- Chebyshev polynomials U.- Relationships among the orthogonal polynomials.- Overview.- III Classical special functions: Remarks/Introduction.- Gamma, beta, and polygamma functions.- Error functions and Fresnel integrals.- Sine, cosine, exponential, and logarithmic integral functions.- Bessel and airy functions.- Legendre functions.- Hypergeometric functions.- Elliptic integrals.- Elliptic functions.- ProductLog function.- Mathieu functions.- Additional special functions.- Solution of quintics with hypergeometric functions.- Overview.- Index.