Trosset | An Introduction to Statistical Inference and Its Applications with R | Buch | 978-1-58488-947-2 | sack.de

Buch, Englisch, 496 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1060 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Trosset

An Introduction to Statistical Inference and Its Applications with R


1. Auflage 2009
ISBN: 978-1-58488-947-2
Verlag: Chapman and Hall/CRC

Buch, Englisch, 496 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1060 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-1-58488-947-2
Verlag: Chapman and Hall/CRC


Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples—not to perform entire analyses.

After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference.

Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

Trosset An Introduction to Statistical Inference and Its Applications with R jetzt bestellen!

Zielgruppe


Undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Experiments. Mathematical Preliminaries. Probability. Discrete Random Variables. Continuous Random Variables. Quantifying Population Attributes. Data. Lots of Data. Inference. 1-Sample Location Problems. 2-Sample Location Problems. The Analysis of Variance. Goodness-of-Fit. Association. Simple Linear Regression. Simulation-Based Inference. R: A Statistical Programming Language. Index.


Michael W. Trosset is Professor of Statistics and Director of the Indiana Statistical Consulting Center at Indiana University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.