E-Book, Englisch, 574 Seiten, Web PDF
Reihe: IFAC Symposia Series
Troch / Desoyer / Kopacek Robot Control 1991 (SYROCO'91)
1. Auflage 2014
ISBN: 978-1-4832-9878-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the 3rd IFAC/IFIP/IMACS Symposium, Vienna , Austria, 16 - 18 September 1991
E-Book, Englisch, 574 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9878-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume contains 92 papers on the state-of-the-art in robotics research. In this volume topics on modelling and identification are treated first as they build the basis for practically all control aspects. Then, the most basic control tasks are discussed i.e. problems of inverse kinematics. Groups of papers follow which deal with various advanced control aspects. They range from rather general methods to more specialized topics such as force control and control of hydraulic robots. The problem of path planning is addressed and strategies for robots with one arm, for mobile robots and for multiple arm robots are presented. Also covered are computational improvements and software tools for simulation and control, the integration of sensors and sensor signals in robot control.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Robot Control 1991: (Syroco'91);4
3;Copyright Page;5
4;Table of Contents;10
5;PREFACE;8
6;PART I: INVITED PAPER;18
6.1;CHAPTER 1. ADAPTIVE INTERFACES FOR ROBOTS;18
6.1.1;1 Introduction;18
6.1.2;2 Concept of adaptive interfaces;19
6.1.3;3 Technology pushfor adaptive interface;19
6.1.4;4 Human pull foradaptive interface;21
6.1.5;5 User interface development environment;22
6.1.6;6 Self-adaptive interfaces;22
6.1.7;7 Challenges ahead;23
6.1.8;References;24
7;PART II: MODELLING AND IDENTIFICATION;26
7.1;CHAPTER 2. COMPARISON OF DESCRIPTOR MODELS AND REDUCED DYNAMIC MODELS FOR CONSTRAINED ROBOTS;26
7.1.1;1 Introduction;26
7.1.2;2 Task Frame, Reference Cartesian Frame, and Joint Space;26
7.1.3;3 Benchmark Tasks;27
7.1.4;4 Descriptor Model in the Joint Space;27
7.1.5;5 Reduced Dynamic Model in the Task Space;28
7.1.6;6 Numerical Integration;29
7.1.7;7 Simulation and Results;29
7.1.8;8 Conclusions;30
7.1.9;References;30
7.2;CHAPTER 3. DYNAMIC MODEL SIMPLIFICATION OF INDUSTRIAL ROBOT MANIPULATORS;32
7.2.1;1. Introduction;32
7.2.2;2. Problem statement;32
7.2.3;3. Model simplification : criterionand procedure;33
7.2.4;4. Experimental evaluation;34
7.2.5;5. Conclusions;35
7.2.6;6. Acknowledgements;35
7.2.7;7. References;35
7.3;CHAPTER 4. ROBOTICS IN SPACE: DISTURBANCES OF PAYLOADS;38
7.3.1;INTRODUCTION;38
7.3.2;SPACECRAFT AND ROBOT;38
7.3.3;MODELING;38
7.3.4;INDIVIDUAL RESULTS;39
7.3.5;COMBINED RESULTS;41
7.3.6;CONCLUSION;42
7.3.7;REFERENCES;42
7.4;CHAPTER 5. ON THE STATISTICAL MODELLING OF MECHANICAL MANIPULATORS;44
7.4.1;INTRODUCTION;44
7.4.2;MODELLING OF ROBOT MANIPULATORS;44
7.4.3;A STATISTICAL MODEL;45
7.4.4;CONCLUSIONS;47
7.4.5;REFERENCES;47
7.5;CHAPTER 6. MINIMUM DYNAMICS PARAMETERS OF ROBOT MODELS;50
7.5.1;INTRODUCTION;50
7.5.2;ROBOT DYNAMIC MODEL;50
7.5.3;BASIC IDEA OF REGROUPING THE DYNAMICS PARAMETERS;51
7.5.4;THE MINIMUM NUMBER OF DYNAMICS PARAMETERS;51
7.5.5;EXAMPLE;55
7.5.6;CONCLUSIONS;55
7.5.7;REFERENCE;55
7.6;CHAPTER 7. SELF-TUNING CONTROL OF A COMMERCIAL MANIPULATOR BASED ON AN INVERSE DYNAMICMODEL;56
7.6.1;INTRODUCTION;56
7.6.2;DYNAMIC MODEL;56
7.6.3;IDENTIFICATION;57
7.6.4;MODEL-BASED CONTROL;59
7.6.5;RESULTS;59
7.6.6;CONCLUSIONS;60
7.6.7;REFERENCES;61
7.7;CHAPTER 8. OFF-LINE IDENTIFICATION/ESTIMATION OF PARAMETERS FOR TWO D.O.F. SCARA ROBOT;62
7.7.1;INTRODUCTION;62
7.7.2;DYNAMIC ROBOT MODEL;62
7.7.3;SIMPLIFICATION AND DISCRETIZATION OF THE MODEL;64
7.7.4;PARAMETER IDENTIFICATION;64
7.7.5;ESTIMATION OF THE COULOMB FRICTION;65
7.7.6;CONCLUSION;65
7.7.7;LITERATURE;66
7.8;CHAPTER 9. ON THE MATHEMATICAL MODELING OF ROV'S;68
7.8.1;INTRODUCTION;68
7.8.2;MECHANICAL MODEL;69
7.8.3;HYDRODYNAMIC COUPLING;69
7.8.4;GENERATION OF DYNAMIC EQUATIONS;70
7.8.5;SIMULATIONS;70
7.8.6;CONCLUSIONS;71
7.8.7;REFERENCES;71
8;PART III: MODELLING AND CONTROL OF FRICTIONAL EFFECTS;72
8.1;CHAPTER 10. COULOMB FRICTION AND SIMULATION PROBLEMS;72
8.1.1;INTRODUCTION;72
8.1.2;CONCLUSION;75
8.1.3;References;75
8.2;CHAPTER 11. POSITION CONTROL FOR ELASTIC POINTING ANDTRACKING SYSTEMS WITH GEAR PLAY AND COULOMB FRICTION AND APPLICATION TO ROBOTS;78
8.2.1;INTRODUCTION;78
8.2.2;MATHEMATICAL MODEL;78
8.2.3;PART I: STABILITY CONDITIONS;79
8.2.4;PART III: STABILIZATION AND COMPENSATION;82
8.2.5;CONCLUSIONS;82
8.2.6;BIBLIOGRAPHY;83
8.3;CHAPTER 12. FRICTION COMPENSATION VIA DISTURBANCE OBSERVER;88
8.3.1;INTRODUCTION;88
8.3.2;COMPENSATION OF FRICTION BY DISTRUBANCE REJECTION CONTROL;89
8.3.3;ROBUSTNESS;90
8.3.4;SIMULATION;90
8.3.5;OPTIMIZATION;90
8.3.6;CONCLUSION;91
8.3.7;REFERENCES;91
9;PART IV: TOPICS ON INVERSEKINEMATICS;92
9.1;CHAPTER 13. DIRECT KINEMATICS OF THE REVERSE STEWART PLATFORM MECHANISM;92
9.1.1;INTRODUCTION;92
9.1.2;KINEMATIC MODEL AND CLOSURE EQUATIONS;93
9.1.3;CASE STUDY;95
9.1.4;CONCLUSIONS;96
9.1.5;Acknowledgements;96
9.1.6;REFERENCES;96
9.2;CHAPTER 14. A SOLUTION TO THE GENERALIZED INVERSEKINEMATIC PROBLEM;98
9.2.1;INTRODUCTION;98
9.2.2;PRELIMINARIES AND PROBLEM DEFINITION;98
9.2.3;THE PROPOSED PROCEDURE;99
9.2.4;CASE STUDY;100
9.2.5;REFERENCES;101
9.3;CHAPTER 15. A FAST ALGORITHM FOR INVERSE KINEMATICS OFUNSOLVABLE MANIPULATORS:SEMI-ITERATIVE AND SEMI-ANALYTIC METHOD;104
9.3.1;INTRODUCTION;104
9.3.2;THE SEMI-ITERATIVE ANDSEMI-ANALYTIC METHOD;104
9.3.3;FURTHER SIMPLIFICATION;105
9.3.4;PRACTICAL EXAMPLE;105
9.3.5;CONVERGENCE ANALYSIS AND COMPUTING TIME;107
9.3.6;CONCLUSION;108
9.3.7;REFERENCES;108
9.4;CHAPTER 16. ISSUES IN ACCELERATION RESOLUTION OFROBOT REDUNDANCY;110
9.4.1;Introduction;110
9.4.2;Velocity vs. Acceleration Resolution;110
9.4.3;Optimization of a Complete Quadratic Form;113
9.4.4;A Discrete Time Algorithm;113
9.4.5;Simulation Results;114
9.4.6;Conclusions;114
9.4.7;References;114
9.5;CHAPTER 17. RESOLVING REDUNDANCY THROUGH A WEIGHTED DAMPED LEAST-SQUARES SOLUTION;116
9.5.1;1 Introduction;116
9.5.2;2 Kinematics;116
9.5.3;3 Internal motion;117
9.5.4;4 Scaling of the Jacobian matrix;117
9.5.5;5 Redundancy resolution with task priority;118
9.5.6;6 The effect of weighting on the damping error;119
9.5.7;7 Implementation aspects;119
9.5.8;8 Conclusions;121
9.5.9;9 Acknowledgments;121
9.5.10;References;121
9.6;CHAPTER 18. BACKWARDS SOLUTION OF ANEIGHT-DEGREES-OF-FREEDOM KINEMATIC STRUCTURE;122
9.6.1;INTRODUCTION;122
9.6.2;DESCRIPTION OF THE PROBLEM AND THE WAY OF SOLUTION;122
9.6.3;PREPARATIONS;124
9.6.4;SOLUTIONS FOR d1 UNTIL d5;124
9.6.5;OBSERVATIONS ABOUT THE JOINT RANGE;125
9.6.6;CONCLUSION;127
9.6.7;REFERENCES;127
10;PART PART V: ADVANCED CONTROL CONCEPTS;128
10.1;CHAPTER 19. SIX DEGREES-OF-FREEDOM TASK SPACE CONTROL FOR THE PUMA 560 MANIPULATOR: AN EXPERIMENTAL STUDY;128
10.1.1;1. INTRODUCTION;128
10.1.2;2. ROBOT CONTROL METHODS;128
10.1.3;3. COMPUTING AND CONTROL ARCHITECTURE;129
10.1.4;4. EXPERIMENTAL IMPLEMENTATION;129
10.1.5;5. EXPERIMENTAL RESULTS AND DISCUSSIONS;130
10.1.6;References;130
10.2;CHAPTER 20. ROBUST CONTROL OF ROBOT MANIPULATORS WITH FAST DYNAMICS;134
10.2.1;I. INTRODUCTION;134
10.2.2;II. PROBLEM STATEMENT;134
10.2.3;III. CONTROL SYNTHESIS;135
10.2.4;IV. SIMULATION RESULTS;136
10.2.5;V. CONCLUSIONS;136
10.2.6;REFERENCES;137
10.2.7;APPENDIX 1;137
10.2.8;APPENDIX 2;137
10.3;CHAPTER 21. SENSITIVITY ANALYSIS OF ROBOT CONTROL SYSTEM SBASED ON DISTURBANCE OBSERVERS;140
10.3.1;INTRODUCTION;140
10.3.2;CONTROL WTTH DISTURBANCE OBSERVER;140
10.3.3;SENSITIVITY ANALYSIS;142
10.3.4;ROBOT POSITIONAL CONTROL WITH DISTURBANCE OBSERVER;142
10.3.5;SIMULATION RESULTS;144
10.3.6;CONCLUSIONS;144
10.3.7;ACKNOWLEDGMENTS;145
10.3.8;REFERENCES;145
10.4;CHAPTER 22. MODEL-BASED FORCE SENSING FOR AN INDUSTRIAL ROBOT BY USING DRIVE SIGNALS;146
10.4.1;Introduction;146
10.4.2;Theoretical Modelling;146
10.4.3;The Industrial Robot R 106;149
10.4.4;Experimental Results;149
10.4.5;Conclusion;150
10.4.6;References;150
10.5;CHAPTER 23. ADVANCED INDUSTRIAL ROBOT CONTROL USING EXTENDED KALMAN FILTER;152
10.5.1;INTRODUCTION;152
10.5.2;ROBOT DYNAMICS;153
10.5.3;THE STOCHASTIC SYSTEM MODEL;153
10.5.4;THE CONTROL ALGORITHM;154
10.5.5;GENERATION OF ESTIMATES;154
10.5.6;IMPROVEMENT OF THE CONTROL ALGORITHM;154
10.5.7;IMPLEMENTATION OF THE CONTROL SYSTEM;155
10.5.8;CONCLUSION;155
10.5.9;REFERENCES;156
10.5.10;APPENDIX;156
10.6;CHAPTER 24. ON LINE DISCRETE-TIME CONTROL OF INDUSTRIAL ROBOTS;158
10.6.1;INTRODUCTION;158
10.6.2;DISCRETE-TIME ROBOTIC MODEL;158
10.6.3;OPTIMAL LINEAR DISCRETE CONTROL LAW;160
10.6.4;CONCLUSION;164
10.6.5;REFERENCES;164
10.7;CHAPTER 25. POINT-TO-POINT MOTION OF ROBOTIC MANIPULATORS: DYNAMICS, CONTROL SYNTHESIS AND OPTIMIZATION;166
10.7.1;INTRODUCTION;166
10.7.2;ROBOT DYNAMICS AND INDEPENDENT JOINT CONTROLLABILITY;167
10.7.3;OPTIMAL CONTROL PROBLEM;167
10.7.4;EXISTENCE OF FEASIBLE SOLUTIONS;168
10.7.5;NUNERICAL EXAMPLE;168
10.7.6;CONCLUSION;169
10.7.7;REFERENCES;169
10.8;CHAPTER 26. ADAPTIVE 'PD+' CONTROL OF RIGID ROBOT MANIPULATORS;170
10.8.1;INTRODUCTION;170
10.8.2;DYNAMICS AND PROPERTIES OF RIGIDROBOT MANIPULATORS;171
10.8.3;LYAPUNOV BASED CONTROL SCHEMES FORRIGID ROBOT SYSTEMS;171
10.8.4;TWO ADAPTIVE 'PD+' CONTROLLERS FOR ROBOT SYSTEMS;172
10.8.5;CASE STUDY;173
10.8.6;CONCLUSION;175
10.8.7;APPENDIX A A BOUND ON V(e, e, 9);175
10.8.8;APPENDIX B SIMULATED ROBOT SYSTEM;175
10.8.9;REFERENCES;175
10.9;CHAPTER 27. PASSIVITY OF ROBOT DYNAMICS IN LEARNING CONTROL;176
10.9.1;1. INTRODUCTION;176
10.9.2;2. PASSIVITY PROPERTIES OF ROBOT DYNAMICS;176
10.9.3;3. P-TYPE LEARNING CONTROL;177
10.9.4;4. PASSIVITY OF RESIDUAL DYNAMICS;178
10.9.5;5. UNIFORM BOUNDEDNESS OF MOTION TRAJECTORIES;179
10.9.6;6. LEARNING CONTROL WITH A FORGETTINGFACTOR AND TRAJECTORY CONVERGENCE;180
10.9.7;7. CONCLUSIONS;181
10.9.8;References;181
10.10;CHAPTER 28. A FUZZY EXPERT TUNER FOR ROBOT CONTROLLER;182
10.10.1;NTRODUCTION;182
10.10.2;THE FUZZY EXPERT TUNER;183
10.10.3;IMPLEMENTATION DETAILS;185
10.10.4;RESULTS;185
10.10.5;CONCLUSION;186
10.10.6;ACKNOWLEDGEMENT;186
10.10.7;REFERENCES;186
10.11;CHAPTER 29. SELF-TUNING SELF-ORGANIZING FUZZY ROBOTCONTROL;188
10.11.1;INTRODUCTION;188
10.11.2;PRINCIPLES OF A SELF-ORGANISING CONTROLLER;189
10.11.3;TUNING OF CONTROLLER PARAMETERS;189
10.11.4;SIMULATION OF ROBOT DYNAMIC CONTROL;191
10.11.5;CONCLUSION;192
10.11.6;ACKNOWLEDGEMENTS;193
10.11.7;REFERENCES;193
11;PART VI: FORCE/POSITION CONTROL;194
11.1;CHAPTER 30. HYBRID FORCE-POSITION CONTROL FOR ROBOTS INCONTACT WITH DYNAMIC ENVIRONMENTS;194
11.1.1;Introduction;194
11.1.2;Hybrid Control Strategy;195
11.1.3;The Robot-Environment Model;195
11.1.4;Trajectory Planning;197
11.1.5;Measure Filtering;197
11.1.6;Decoupling and Linearizing Control;198
11.1.7;References;199
11.1.8;Appendix;199
11.2;CHAPTER 31. ON THE STABILITY OF A FORCE/POSITIONCONTROL SCHEME FOR ROBOT MANIPULATORS;200
11.2.1;INTRODUCTION;200
11.2.2;MODEL OF A ROBOT MANIPULATOR IN CONTACT WITH THE ENVIRONMENT;201
11.2.3;PARALLEL CONTROL;202
11.2.4;STABILITY OF A NEW SCHEME;203
11.2.5;DISCUSSION;205
11.2.6;ACKNOWLEDGEMENTS;205
11.2.7;REFERENCES;205
11.3;CHAPTER 32. AN IJC BASED FORCE-POSITION CONTROL OF AROBOT ARM;206
11.3.1;1. INTRODUCTION;206
11.3.2;2. CONSTRAINED DYNAMIC ROBOT MODEL;207
11.3.3;3. AN DC-BASED FORCE/POSITION CONTROL SCHEME;207
11.3.4;4. SIMULATION RESULTS;208
11.3.5;5. CONCLUDING REMARKS;209
11.3.6;REFERENCES;209
11.4;CHAPTER 33. SOFTWARE SYSTEM FOR SIMULATION AND CONTROLSYNTHESIS OF ROBOTS FOR METAL MACHINING PROCESSES;212
11.4.1;INTRODUCTION;212
11.4.2;MODELS OF CONTACT FORCES;212
11.4.3;DYNAMIC MODELS IN CONSTRAINED MOTION CONTROLOF ROBOTS;213
11.4.4;DESCRIPTION OF SOFTWARE PACKAGE;215
11.4.5;AN ADAPTIVE IMPLICIT/EXPLICIT FORC ECONTROL SCHEME;216
11.4.6;REFERENCES;217
11.5;CHAPTER 34. FORCE CONTROL FOR TRACKING A SET OF TASKS IN PRESENCE OF CONSTRAINTS;218
11.5.1;I. Introduction;218
11.5.2;II. Representation and Transfer of Force Systems[8];218
11.5.3;III. Kinematic Representations and Transformation[8];219
11.5.4;IV. Dynamics of Robotic Systems;219
11.5.5;V. Constraints on the Moving Body;220
11.5.6;VI. Control Problem;220
11.5.7;VII. Programmed Force Scheme;221
11.5.8;VIII. Force Feedback Scheme;221
11.5.9;IX. Example and Simulation;222
11.5.10;X. Conclusion;222
11.5.11;References;222
12;PART VII: CONTROL OF HYDRAULIC ROBOTS;224
12.1;CHAPTER 35. ON THE MODEL-BASED CONTROL OF A HYDRAULIC LARGE RANGE ROBOT;224
12.1.1;INTRODUCTION;224
12.1.2;ROBOT MODEL;224
12.1.3;CONTROL CONCEPTS;226
12.1.4;CONCLUSIONS;227
12.1.5;REFERENCES;227
12.2;CHAPTER 36. CAD AND IMPLEMENTATION OF DIGITAL CONTROLLERS FOR THE FAST TUD-HYDRAULIC TESTROBOT MANIPULATORS;230
12.2.1;INTRODUCTION;230
12.2.2;THE FAST TUD-HYDRAULIC TEST ROBOT;230
12.2.3;DIGITAL CONTROL SYSTEM USING SIGNAL PROCESSOR;231
12.2.4;SIMULATION AND EXPERIMENTAL RESULTS;233
12.2.5;CONCLUSIONS AND PERSPECTIVES;233
12.2.6;ACKNOWLEDGEMENTS;235
12.2.7;REFERENCES;235
12.3;CHAPTER 37. NONLINEAR CONTROL OF A HYDRAULIC ROBOT;236
12.3.1;1. Introduction;236
12.3.2;2. The Laboratory Robot;236
12.3.3;3. The Model of the Hydraulic Robot;237
12.3.4;4. The Controller for the nth-Time Derivative;238
12.3.5;5. The Controller for the Hydraulic
Robot;238
12.3.6;6. Simulation Results;239
12.3.7;7. Conlusion;240
12.3.8;References;240
13;PART VIII: PATH PLANNING FOR ONEROBOTIC ARM;242
13.1;CHAPTER 38. MINIMAL POWER CONSUMPTION FOR AN INDUSTRIAL ROBOT WITH 6 AXES;242
13.1.1;1 Introduction;242
13.1.2;2 Robot Model;242
13.1.3;3 Methods;243
13.1.4;4 Computational Simulation Results;243
13.1.5;5 Conclusion;246
13.1.6;References;246
13.2;CHAPTER 39. OBJECT CONTOUR SURFACE GENERATION FORROBOTIC APPLICATIONS;248
13.2.1;INTRODUCTION;248
13.2.2;OBJECT ENVELOPING-SURFACE GENERATION;248
13.2.3;END-EFFECTOR PATH GENERATION;250
13.2.4;SPEED-CONTROLLED TRAJECTORY GENERATION;251
13.2.5;ROBOT-ARM TRAJECTORY CONTROL;252
13.2.6;CONCLUSSIONS;252
13.2.7;REFERENCES;252
13.3;CHAPTER 40. OPTIMAL SCHEDULING OF FUNCTIONAL POINTS OF ATRAJECTORY GENERALIZATION TO CLUTTERED ENVIRONMENT;254
13.3.1;INTRODUCTION;254
13.3.2;THE ELASTIC NET METHOD (ENM);254
13.3.3;APPLICATION OF THE ENM TO ROBOTICS;255
13.3.4;CONCLUSION;257
13.3.5;REFERENCES;258
13.3.6;APPENDICES;258
13.4;CHAPTER 41. PREDICTIVE CONTROL OF A MANIPULATOR IN ACLUTTERED ENVIRONMENT;260
13.4.1;INTRODUCTION;260
13.4.2;PATH-PLANNING ALGORITHM;275
13.4.3;PREDICTIVE CONTROL;275
13.4.4;CONCLUSION;262
13.4.5;REFERENCES;262
13.5;CHAPTER 42. UNCERTAINTY MODELLING IN CONFIGURATION SPACE FOR ROBOTIC MOTION PLANNING;263
13.5.1;INTRODUCTION;263
13.5.2;UNCERTAINTY SOURCES;263
13.5.3;UNCERTAINTY OF THE ABSOLUTE POSITION OF ANYOBJECT POINT;264
13.5.4;UNCERTAINTY IN THE CONFIGURATION SPACE;265
13.5.5;CONCLUSIONS;268
13.5.6;REFERENCES;268
13.6;CHAPTER 43. FAST COLLISION-FREE MOTION-PLANNING FORROBOT MANIPULATORS BASED ON PARALLELIZED ALGORITHMS;269
13.6.1;INTRODUCTION;269
13.6.2;OBSTACLE TRANSFORMATION;269
13.6.3;MODELLING OF THE QUANTIZEDC-SPACE;270
13.6.4;PATH-SEARCHING IN GRID-GRAPHS;270
13.6.5;GROSS-MOTION PLANNING FOR ASCARA ROBOT;271
13.6.6;HIERARCHICALLY STRUCTURED MOTION-PLANNING;271
13.6.7;PARALLEL ALGORITHMS FORPATH-SEARCHING;273
13.6.8;CONCLUSION;274
13.6.9;ACKNOWLEDGEMENT;274
13.6.10;REFERENCES;274
13.7;CHAPTER 44. PATH-PLANNING SOLUTION BASED ON A POTENTIALFIELD NON UNIFORMLY DISTRIBUTED;276
13.7.1;INTRODUCTION;276
13.7.2;THE POTENTIAL FIELD TECHNIQUE;276
13.7.3;EXTENSION TO A THREE-DIMENSIONAL SPACE;277
13.7.4;SELF-ADJUSTABLE FILTER;277
13.7.5;IMPLEMENTATION AND RESULTS;278
13.7.6;CONCLUSIONS;279
13.7.7;REFERENCES;279
14;PART IX: MOBILE ROBOTS;282
14.1;CHAPTER 45. A STOCHASTIC CONTROL FRAMEWORK FOR MOVING VEHICLES IN CHANGING ENVIRONMENTS;282
14.1.1;1. INTRODUCTION;282
14.1.2;2. A BASIC PROBLEM;282
14.1.3;3. DIFFERENT VEHICLE'S TASKS;285
14.1.4;4. ACCELERATION CONSIDERATIONS;285
14.1.5;5. DIFFERENT OBJECTS;286
14.1.6;6. DIFFERENT GEOMETRY;287
14.1.7;7. CONCLUSIONS;287
14.1.8;ACKNOWLEDGEMENT;287
14.1.9;REFERENCES;287
14.2;CHAPTER 46. A NEURAL CONTROLLER FOR MOBILE ROBOTS;288
14.2.1;INTRODUCTION;288
14.2.2;CONTROL LAW;289
14.2.3;NEURAL CONTROLLER;290
14.2.4;SIMULATION RESULTS;291
14.2.5;CONCLUSIONS;291
14.2.6;REFERENCES;292
14.3;CHAPTER 47. COMPUTATIONAL COMPLEXITY OF PATH PLANNING ALGORITHMS BASED ON SAFE TRIANGLES AND QUADTREE AS WORK SPACE REPRESENTATIONS: A COMPARISON;294
14.3.1;INTRODUCTION;294
14.3.2;COMPLEXITY OF ST-R;295
14.3.3;COMPARISON;297
14.3.4;CONCLUSION;298
14.3.5;REFERENCES;298
14.4;CHAPTER 48. CONTROL ARCHITECTURE FOR AN ELECTRICAL,ACTIVELY BALANCED MULTI-LEG ROBOT, BASED ON EXPERIMENTS WITH A PLANAR ONE LEG MACHINE;300
14.4.1;INTRODUCTION;300
14.4.2;THE ONE-LEG SYSTEM CONTROL;301
14.4.3;COMPLIANT WALKING;304
14.4.4;THE GENERALIZED APPROACH;305
14.4.5;CONCLUSION;307
14.4.6;REFERENCES;307
14.5;CHAPTER 49. AN OBJECT-DIRECTED PATHPLANNING SYSTEM FORMULTIPLE ROBOTS WITH SINGULARITY-COPING PROPERTIESE. ;308
14.5.1;Introduction;308
14.5.2;Conclusion;313
14.5.3;References;313
14.6;CHAPTER 50. FLEXIBLE, ONLINE COLLISION AVOIDANCE INMULTI-ROBOT SYSTEMS;314
14.6.1;INTRODUCTION;314
14.6.2;GEOMETRICAL CONSIDERATIONS;314
14.6.3;COLLISION DETECTION AND AVOIDANCE;315
14.6.4;CONCLUSION;319
14.6.5;REFERENCES;319
14.7;CHAPTER 51. COLLISION AVOIDANCE OF THE DELFT INTELLIGENT ASSEMBLY CELL;320
14.7.1;I GOALS AND MEANS OF DIAC;320
14.7.2;II GENERAL DESCRIPTION OF DIAC;320
14.7.3;Ill SENSORS;321
14.7.4;IV COLLISION AVOIDANCE;322
14.7.5;V ACKNOWLEDGMENT;324
14.7.6;VI REFERENCES;325
14.8;CHAPTER 52. A CONTROL SYSTEM FOR TWO ROBOT ARMS COORDINATION;326
14.8.1;1. INTRODUCTION;326
14.8.2;2. SYSTEM ARCHITECTURE;327
14.8.3;3. PROGRAMMING ENVIRONMENT;328
14.8.4;4. COORDINATED SCHEME;329
14.8.5;5. EXPERIMENTAL RESULTS;330
14.8.6;6. CONCLUSIONS;330
14.8.7;REFERENCES;330
14.9;CHAPTER 53. HEURISTIC DECENTRALIZED CONTROL OF MULTI ARMS COORDINATED SYSTEMS;332
14.9.1;INTRODUCTION AND NOMENCLATURE;332
14.9.2;THE DYNAMIC TEAM MODEL OF MULTI ARMS CONVEYING SYSTEMS;333
14.9.3;HEURISTIC CONTROL PROBLEM FOR THE ROBOT ARM;334
14.9.4;HEURISTIC DECENTRALIZED CONTROL LAW;335
14.9.5;SIMULATION STUDIES;337
15;PART X: MODELLING AND CONTROL OF FLEXIBLE ROBOTS;338
15.1;CHAPTER 54. SLENDERNESS OF FLEXIBLE ROBOT LINKS: DYNAMICMODEL SELECTION;338
15.1.1;INTRODUCTION;338
15.1.2;DYNAMIC MODELS FOR FLEXIBLE ROBOT LINKS;338
15.1.3;MAIN RESULTS;340
15.1.4;SIMULATION STUDIES;342
15.1.5;CONCLUSIONS;342
15.1.6;References;342
15.2;CHAPTER 55. SIMULATION OF ROBOTS WITH FLEXIBLE LINKS;344
15.2.1;INTRODUCTION;344
15.2.2;MODEL OF FLEXIBLE LINKS;345
15.2.3;KINEMATICS OF FLEXIBLE LINKS;345
15.2.4;EXTENSION OF THE RECURSIVE LUH-WALKER-PAULAL GORITHM TO FLEXIBLE SYSTEMS;346
15.2.5;SIMULATION RESULTS;347
15.2.6;MODEL OF DRIVE AND MEASUREMENT DEVICE;347
15.2.7;MODULAR SOFTWARE DESIGN;347
15.2.8;CONCLUSION;348
15.2.9;APPENDIX A;348
15.2.10;APPENDIX B;348
15.2.11;REFERENCES;349
15.3;CHAPTER 56. vDYNAMIC MODELLING OF INDUSTRIAL MANIPULATOR JOINTS;350
15.3.1;INTRODUCTION;350
15.3.2;RIGID AND FLEXIBLE JOINT MODELS;350
15.3.3;RESOLVER TRACKING CONVERTER TRANSFER FUNCTION;353
15.3.4;CONCLUSIONS;354
15.3.5;ACKNOWLEDGEMENTS;354
15.3.6;REFERENCES;354
15.4;CHAPTER 57. ENERGY BASED DETERMINATION OF IDENTIFIABLE PARAMETERS OF FLEXIBLE LINK ROBOTS;356
15.4.1;INTRODUCTION;356
15.4.2;MODELING OF FLEXIBLE ROBOTS;356
15.4.3;IDENTIFIABILITY OF STANDARD PARAMETERS;359
15.4.4;CONCLUSION;360
15.4.5;REFERENCES;360
15.5;CHAPTER 58. AN EXTENDED LOAD COMPENSATION METHOD TOCONTROL FLEXIBLE JOINT ROBOTS;362
15.5.1;INTRODUCTION;362
15.5.2;INVERSE DYNAMICS BY TORQUEMEASUREMENT OR ESTIMATION FORA RIGID ROBOT STRUCTURE;363
15.5.3;EXTENSION OF THE METHOD;364
15.5.4;SIMULATION RESULTS;365
15.5.5;CONCLUSION;367
15.5.6;REFERENCES;367
15.6;CHAPTER 59. COMPOSITE COMPUTED TORQUE CONTROL OFROBOTS WITH ELASTIC MOTOR TRANSMISSIONS;368
15.6.1;INTRODUCTION;368
15.6.2;A MANIPULATORWITH ELASTIC MOTOR TRANSMISSIONS;368
15.6.3;COMPOSITE COMPUTED TORQUE CONTROL;369
15.6.4;AN EXAMPLE;370
15.6.5;CONCLUSIONS;371
15.6.6;FUTURE RESEARCH;372
15.6.7;REFERENCES;372
15.7;CHAPTER 60. A PD CONTROL LAW FOR TRAJECTORY TRACKING OF FLEXIBLE JOINT ROBOTS;374
15.7.1;INTRODUCTION;374
15.7.2;BACKGROUND;374
15.7.3;TRAJECTORY TRACKING;375
15.7.4;CASE STUDY;375
15.7.5;CONCLUSIONS;376
15.7.6;REFERENCES;379
15.8;CHAPTER 61. PATH FOLLOWING FOR A FLEXIBLE JOINT ROBOT;380
15.8.1;1. Introduction;380
15.8.2;2. Path Following for Rigid Robots;381
15.8.3;3. Path Following for Flexible Joint Robots;382
15.8.4;4. Path Following Example;384
15.8.5;5. Conclusions;385
15.8.6;References;385
15.9;CHAPTER 62. ADAPTIVE TRAJECTORY TRACKING FOR FLEXIBLEJOINT MANIPULATORS WITHOUT JOINT ACCELERATION MEASUREMENT;386
15.9.1;I. INTRODUCTION;386
15.9.2;II. CONTROL OF FLEXIBLE JOINT MANIPULATORS;386
15.9.3;III. ADAPTIVE CONTROL OF FLEXIBLE JOINT MANIPULATORS;387
15.9.4;CONCLUSIONS;388
15.9.5;APPENDIX A;389
15.9.6;APPENDIX B;389
15.9.7;Appendix C;390
15.9.8;References;391
15.10;CHAPTER 63. DYNAMIC CONTROL OF FLEXIBLE JOINT ROBOTSWITH CONSTRAINED END-EFFECTOR MOTION;392
15.10.1;INTRODUCTION;392
15.10.2;TASK SPACE DESCRIPTION OF SYSTEM CONSTRAINTS;392
15.10.3;SYSTEM CONSTRAINTS IN ANALYTICAL FORM;393
15.10.4;CONSTRAINED SYSTEM EQUATIONS OF MOTION;394
15.10.5;NONLINEAR DECOUPLING CONTROL BASED ON INVERSE DYNAMICS;394
15.10.6;LINEARIZED PERTURBATION EQUATIONS OF MOTION;395
15.10.7;ADAPTIVE CONTROL OF THE LINEARIZED PERTURBATION SYSTEM;395
15.10.8;EXAMPLE;396
15.10.9;CONCLUSIONS;396
15.10.10;REFERENCES;397
15.11;CHAPTER 64. QUASI-STATIC COMPENSATION OF FORCE ERRORSFOR FLEXIBLE MANIPULATORS;398
15.11.1;1. INTRODUCTION;398
15.11.2;2. MODEL OF A FLEXIBLE ARM;398
15.11.3;3. COMPENSATION OF THE FORCE ERRORS;399
15.11.4;4. COMPUTATION OF BKE AND G;400
15.11.5;5. CASE STUDIES;401
15.11.6;6. CONCLUSIONS;401
15.11.7;ACKNOWLEDGEMENTS;402
15.11.8;REFERENCES;402
15.12;CHAPTER 65. ON THE CONTROL OF THE FLEXIBLE MANIPULATOR ARM;404
15.12.1;INTRODUCTION;404
15.12.2;MODEL OF DYNAMICS OF THE FLEXIBLE MANIPULATOR;404
15.12.3;FLEXIBLE MANIPULATOR CONTROL DESIGN;405
15.12.4;REFERENCES;408
15.13;CHAPTER 66. ITERATIVE LEARNING CONTROL OF A ONE-LINKFLEXIBLE MANIPULATOR;410
15.13.1;INTRODUCTION;410
15.13.2;LEARNING CONTROLLER DESIGN;411
15.13.3;THE EXPERIMENTAL SETUP;413
15.13.4;EXPERIMENTAL RESULTS;414
15.13.5;ACNOWLEDGEMENTS;415
15.13.6;REFERENCES;415
15.14;CHAPTER 67. STATE-FEEDBACK CONTROLLER FOR ATWO-DEGREE-OF-FREEDOM FLEXIBLE ROBOT ARM;416
15.14.1;1 INTRODUCTION;416
15.14.2;2 MODELLING;416
15.14.3;3 CONTROLLER;419
15.14.4;4 CONCLUSIONS;421
15.14.5;5 REFERENCES;421
15.15;CHAPTER 68. FLEXIBILITY CONTROL OF A LIGHTWEIGHT ROBOT ARM MODULE;422
15.15.1;INTRODUCTION;422
15.15.2;LITERATURE SURVEY;422
15.15.3;HARDWARE CONFIGURATION;423
15.15.4;MODELLING;424
15.15.5;ACKNOWLEDGEMENTS;427
15.15.6;REFERENCES;427
16;PART XI: COMPUTATIONAL ASPECTS;428
16.1;CHAPTER 69. ANALYTICAL CALCULATION OF THE FEEDFORWARDSUP TO THEIR SECOND DERIVATIVES ANDREALIZATION OF AN OPTIMAL SPATIAL SPLINE TRAJECTORY FOR A 6-DOF ROBOT;428
16.1.1;INTRODUCTION;428
16.1.2;KINEMATICS;428
16.1.3;DESCRIPTION OF A SPATIAL SPLINETRAJECTORY;430
16.1.4;VELOCITY OPTIMIZATION;431
16.1.5;MEASUREMENTS;432
16.1.6;CONCLUSION;433
16.1.7;REFERENCES;433
16.1.8;APPENDIX;433
16.2;CHAPTER 70. FEASIBILITY OF PARALLELIZATION OF NONLINEAR FEEDBACK METHOD OF ROBOT ARM CONTROL;434
16.2.1;1. INTRODUCTION;434
16.2.2;2. TASK SPACE BASED NONLINEAR FEEDBACK CONTROLLER;435
16.2.3;3. THE COMPUTATIONAL SCHEME;435
16.2.4;4. COMPUTATIONAL COMPLEXITY ANALYSIS;436
16.2.5;5. PARALLELIZATION;437
16.2.6;6. SUMMARY AND DISCUSSIONS;437
16.2.7;References;438
16.3;CHAPTER 71. TRANSPUTER NETWORK CONTROLS ROBOT AXES;440
16.3.1;Introduction;440
16.3.2;Why Transputers ?;440
16.3.3;Control Architecture;441
16.3.4;Axis Control Loop;442
16.3.5;Sensor integration;443
16.3.6;Results;443
16.3.7;Conclusion;444
16.3.8;Literature;444
17;SOFTWARE TOOLS FOR SIMULATIONAND CONTROL;446
17.1;CHAPTER 72. ROPSIM, A ROBOT OFF-LINE PROGRAMMING AND BREAL-TIME SIMULATION SYSTEM INCLUDING DYNAMICS;446
17.1.1;1 INTRODUCTION;446
17.1.2;2 CONCEPT/ARCHITECTURE OF ROPSIM;446
17.1.3;3 PROGRAMMING MODULE;447
17.1.4;4 GENERIC MODELS;447
17.1.5;5 SIMULATION MODULE;449
17.1.6;6 ANIMATION;450
17.1.7;7 FIRST RESULTS;450
17.1.8;8 CONCLUSION AND OUTLOOK;451
17.1.9;9 ACKNOWLEDGEMENT;451
17.1.10;10 REFERENCES;451
17.2;CHAPTER 73. SIMULATION ENVIRONMENT FOR ROBOT CONTROL DESIGN;452
17.2.1;1. INTRODUCTION;452
17.2.2;2. THE ROBOT DYNAMIC MODEL;452
17.2.3;3. THE SIMULATION SYSTEM;455
17.2.4;4. CONCLUSION;456
17.2.5;5. REFERENCES;456
17.3;CHAPTER 74. PROGRAM PACKAGE FOR GENERATION OF CONTROLLAWS FOR ROBOT MANIPULATORS IN SYMBOLICFORM;458
17.3.1;INTRODUCTION;458
17.3.2;BASIC SYMBOLIC MODELS AND CONTROL LAWS;459
17.3.3;GENERATION OF CUSTOMIZED SYMBOLIC FORMS;460
17.3.4;SIMULATION;460
17.3.5;EXAMPLE;460
17.3.6;REFERENCES;462
17.4;CHAPTER 75. AN EXPERT SYSTEM FOR ROBOTIC ARC WELDING ALUMINIUM ALLOYS;464
17.4.1;INTRODUCTION;464
17.4.2;DESCRIPTION OF THE EXPERT SYSTEM SHELL;464
17.4.3;SYSTEM SOFTWARE AND FUNCTION;465
17.4.4;CONNECTION OF THE EXPERT SYSTEM TOA WELDING ROBOT;466
17.4.5;CONCLUSION;467
17.4.6;REFERENCES;467
17.5;CHAPTER 76. ADP: AN ARC WELDING DIAGNOSIS ANDPLANNING AID;468
17.5.1;DIAGNOSE AND PLANNING INTHE DOMAIN OF ROBOTIC ARC WELDING;468
17.5.2;SYSTEMS REQUIREMENTS;469
17.5.3;STEPS OF REALISATION;469
17.5.4;DEVELOPMENT OF THE DIAGNOSE PROTOTYPE ADS;470
17.5.5;APS - THE KNOWLEDGE BASEFOR PLANNING PURPOSES;472
17.5.6;REFERENCES;473
18;PART XIII: SENSORS AND THE IRAPPLICATION;474
18.1;CHAPTER 78. FORCE AND TORQUE SENSORIAL SUBSYSTEM OFROBOT WRIST;474
18.1.1;INTRODUCTION;474
18.1.2;CONCEPT OF THE SENSORIAL SUBSYSTEM;474
18.1.3;MECHANICAL STRUCTURE;474
18.1.4;ELASTIC JOINTS;476
18.1.5;SIGNAL AND DATA PROCESSING;476
18.1.6;RESULTS OF TESTING AND CALIBRATION;477
18.1.7;CONCLUSION;478
18.1.8;REFERENCES;478
18.2;CHAPTER 79. ROBOT CONTROL SYSTEM USING SLIP DISPLACEMENT SIGNAL FOR ALGORITHM CORRECTION;480
18.2.1;1. Introduction.;480
18.2.2;2. Robot control system algorithm adn its correction.;480
18.2.3;3. Determination of slip displacement signal.;482
18.2.4;4. Conclusions.;483
18.3;CHAPTER 80. ACCOMMODATION BASED ON THE COMPLIANT ROBOT WRIST WITH SIX D.O.F. DISPLACEMENT/FORCE SENSING CAPABILITY;486
18.3.1;INTRODUCTION;486
18.3.2;ACCOMMODATION BASED ON MONITORING THE COMPLIANT MOTIONS;486
18.3.3;THE COMPLIANT WRIST DISPLACEMENT/FORCE SENSORS;487
18.3.4;CONCLUSION;489
18.3.5;REFERENCES;490
18.4;CHAPTER 81. ACTIVE SENSING STRATEGIES WITH NON-CONTACTCOMPLIANT MOTIONS FOR CONSTRAINT BASED RECOGNITION;492
18.4.1;INTRODUCTION;492
18.4.2;NON-CONTACT COMPLIANT MOTION CONTROL;492
18.4.3;REPRESENTING 3-D OBJECT GEOMETRIC FEATURES;494
18.4.4;PROXIMITY SENSOR MODEL;494
18.4.5;ESTIMATING LOCATIONOF FEATURES;495
18.4.6;CONCLUSIONS;497
18.4.7;ACKNOWLEDGEMENTS;497
18.4.8;REFERENCES;497
18.4.9;APPENDIX.;497
18.5;CHAPTER 82. AN OPTOELECTRONIC SYSTEM FOR FORCE-TORQUE SENSING AND FEEDBACK ALGORITHMS PROCESSING;498
18.5.1;INTRODUCTION;498
18.5.2;THE FORCE-MOMENT SENSOR;498
18.5.3;THE OPTOELECTRONIC SYSTEM FOR THEFORCE-MOMENT SENSING;499
18.5.4;THE ALGORITHMIC FOR THE SIXCOMPONENTE FORCE-MOMENT FEEDBACK CONTROL;501
18.5.5;THE ADAPTATION OF THE OPTOELECTRONIC SCANNING SYSTEM;502
18.5.6;THE PROCESSING OF THE VIDEO INFORMATION;502
18.5.7;CONCLUSION;503
18.5.8;REFERENCES;503
18.6;CHAPTER 83. A NEW MEASUREMENT SYSTEM FOR ADVANCED MODELLING AND IDENTIFICATION FOR ROBOTCONTROL;504
18.6.1;INTRODUCTION;504
18.6.2;PRINCIPLE OF THE LASER TRACKING SYSTEM (LTS);505
18.6.3;REAL TIME POSITION MEASUREMENT;505
18.6.4;ORIENTATION MEASUREMENT;507
18.6.5;APPLICATIONS;508
18.6.6;ACKNOWLEDGEMENTS;509
18.6.7;CONCLUSION;509
18.6.8;References;509
18.7;CHAPTER 84. CONTROLLING THE RELATIVE POSITION USING COHERENT ULTRASONICS;512
18.7.1;1. THE ASSEMBLY PROBLEM;512
18.7.2;2. GEOMETRY AND SIGNAL MODELS;514
18.7.3;3. ULTRASONIC RANGE FEEDBACK;514
18.7.4;4. SENSITIVITY AND ERROR MODELS;516
18.7.5;5. CONCLUSIONS AND COMMENTS;517
18.7.6;REFERENCES;517
18.8;CHAPTER 85. NEW METHODS FOR DETECTING MOVING OBSTACLES USING A PASSIVE 3-D VISUAL SENSOR;518
18.8.1;INTRODUCTION;518
18.8.2;3D VISUAL SENSOR;518
18.8.3;CONFIGURATION OF VISUAL SYSTEM;519
18.8.4;EXPERIMENT ON THE DETECTIONOF MOBILE OBSTACLES;521
18.8.5;CONCLUSION;522
18.8.6;REFERENCES;523
18.9;CHAPTER 86. CLOSED LOOP ROBOT CONTROL BY REAL TIMEVISUAL SENSOR;524
18.9.1;1. INTRODUCTION;524
18.9.2;2. REAL TIME VISUAL SENSOR;524
18.9.3;3. INTEGRATION OF VISION IN AROBOT CONTROLLER UNIT;526
18.9.4;4. COMMUNICATION VISION-ROBOT;526
18.9.5;5. CONTROL OF A ROBOT BY VISUAL SENSOR;527
18.9.6;6. ASSEMBLY MANIPULATION;528
18.9.7;7. EXPERIMENTAL RESULTS;528
18.9.8;8. CONCLUSION;529
18.9.9;9. ACKNOWLEDGEMENT;529
18.9.10;REFERENCES;529
18.10;CHAPTER 87. ROBOT CONTROL USING STEREO EYES IN HAND TECHNIQUE;530
18.10.1;INTRODUCTION;530
18.10.2;STATEMENT OF THE PROBLEM;530
18.10.3;MANIPULATOR/WORKPIECE INTERACTIONS;531
18.10.4;CONTROL STRATEGY;532
18.10.5;RESULTS;533
18.10.6;REFERENCES;534
18.11;CHAPTER 88. PROXIMITY MATRIX SENSOR IMAGE PROCESSING;536
18.11.1;INTRODUCTION;536
18.11.2;8TATE OF THE ART;536
18.11.3;CAPACITIVE BA8ED MATRIX PROXIMITY SENSOR;537
18.11.4;PROXIMITY IMAGE PROCESSING;538
18.11.5;EXPERIMENTAL RESULTS;540
18.11.6;REFERENCES;541
18.12;CHAPTER 89. HIGH BANDWIDTH ORIENTATION MEASUREMENT ANDCONTROL BASED ON COMPLEMENTARY FILTERING;542
18.12.1;INTRODUCTION;542
18.12.2;DESIGN OF THE COMPLEMENTARY FILTERS;543
18.12.3;SENSORS;543
18.12.4;FILTER TUNING AS A FUNCTION OF THECHARACTERISTIC SENSOR PARAMETERS;544
18.12.5;FILTER IMPLEMENTATION;545
18.12.6;APPLICATION TO THE CLOSED-LOOPCONTROL OF AN INVERTED PENDULUM;546
18.12.7;CONCLUSIONS;547
18.12.8;ACKNOWLEDGEMENTS;547
18.12.9;REFERENCES;547
18.13;CHAPTER 90. A RUNAWAY PROTECTION SYSTEM FOR ROBOTSBASED ON ACCELERATION MEASUREMENTS;548
18.13.1;INTRODUCTION;548
18.13.2;CURRENT INDUSTRIAL ROBOTCONTROLLERS;548
18.13.3;DESIGN OF THE ROBOT RUNAWAY PROTECTION SYSTEM;549
18.13.4;IMPLEMENTATION OF THE RUNAWAY PROTECTION SYSTEM;550
18.13.5;CONCLUSION;552
18.13.6;ACKNOWLEDGEMENTS;552
18.13.7;REFERENCES;552
19;MISCELLANEOUS;554
19.1;CHAPTER 91. INVESTIGATIONS ON LIGHTWEIGHT INDUSTRIAL ROBOTS;554
19.1.1;INTRODUCTION;554
19.1.2;MODELING;555
19.1.3;ANALYZING SIMULATION RESULTS;555
19.1.4;REFERENCES;558
19.2;CHAPTER 92. CONTROL ALGORITHM AND CONTROLLER FOR THEDIRECT DRIVE DELTA ROBOT;560
19.2.1;INTRODUCTION;560
19.2.2;ROBOT DESCRIPTION;561
19.2.3;DYNAMIC MODEL OF THE ROBOT;561
19.2.4;CONTROL ALGORITHM;562
19.2.5;HARDWARE AND SOFTWARE ARCHITECTURE;562
19.2.6;EXPERIMENTAL RESULTS;562
19.2.7;CONCLUSION;563
19.2.8;ACKNOWLEDGMENT;564
19.2.9;REFERENCES;564
19.3;CHAPTER 93. ROBOT SAPIENS ON THE MOVE TO .PERSONAL ROBOTS;568
19.3.1;1. Introduction;568
19.3.2;2. Current and Future Trends in Advanced Robotics.;568
19.3.3;3. Somato-perception and Artificial Intelligence for Advanced Robots;568
19.3.4;4. Leading Edge Research in Robotics at the University of Salford.;569
19.3.5;5. The General Requirements of Artificial Intelligence in Robotics;572
19.3.6;6. Personal Robots;573
19.3.7;7. International Advanced Robotics Programme;574
19.3.8;8. Conclusion;575
19.3.9;References;575
20;AUTHOR INDEX;576
21;KEYWORD INDEX;578




