Treves | Introduction to Pseudodifferential and Fourier Integral Operators | Buch | 978-1-4684-8782-4 | sack.de

Buch, Englisch, 299 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 517 g

Reihe: University Series in Mathematics

Treves

Introduction to Pseudodifferential and Fourier Integral Operators

Pseudodifferential Operators
1980
ISBN: 978-1-4684-8782-4
Verlag: Springer US

Pseudodifferential Operators

Buch, Englisch, 299 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 517 g

Reihe: University Series in Mathematics

ISBN: 978-1-4684-8782-4
Verlag: Springer US


I have tried in this book to describe those aspects of pseudodifferential and Fourier integral operator theory whose usefulness seems proven and which, from the viewpoint of organization and "presentability," appear to have stabilized. Since, in my opinion, the main justification for studying these operators is pragmatic, much attention has been paid to explaining their handling and to giving examples of their use. Thus the theoretical chapters usually begin with a section in which the construction of special solutions of linear partial differential equations is carried out, constructions from which the subsequent theory has emerged and which continue to motivate it: parametrices of elliptic equations in Chapter I (introducing pseudodifferen tial operators of type 1, 0, which here are called standard), of hypoelliptic equations in Chapter IV (devoted to pseudodifferential operators of type p, 8), fundamental solutions of strongly hyperbolic Cauchy problems in Chap ter VI (which introduces, from a "naive" standpoint, Fourier integral operators), and of certain nonhyperbolic forward Cauchy problems in Chapter X (Fourier integral operators with complex phase). Several chapters-II, III, IX, XI, and XII-are devoted entirely to applications. Chapter II provides all the facts about pseudodifferential operators needed in the proof of the Atiyah-Singer index theorem, then goes on to present part of the results of A. Calderon on uniqueness in the Cauchy problem, and ends with a new proof (due to J. J. Kohn) of the celebrated sum-of-squares theorem of L. Hormander, a proof that beautifully demon strates the advantages of using pseudodifferential operators.

Treves Introduction to Pseudodifferential and Fourier Integral Operators jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.