Totzeck | Asymptotic Analysis of Optimal Control Problems and Global Optimization | Buch | 978-3-8439-2959-2 | www2.sack.de

Buch, Englisch, 171 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 267 g

Reihe: Mathematik

Totzeck

Asymptotic Analysis of Optimal Control Problems and Global Optimization


Erscheinungsjahr 2017
ISBN: 978-3-8439-2959-2
Verlag: Dr. Hut

Buch, Englisch, 171 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 267 g

Reihe: Mathematik

ISBN: 978-3-8439-2959-2
Verlag: Dr. Hut


In this thesis we study asymptotic limits applied to three optimization problems: optimal design of a semiconductor device and the zero space charge limit; control of a crowd, represented by either a particle system or a mean-field equation, with the help of external agents; consensus-based global optimization and its mean-field limit.

Our strategy can be summarized as follows: we analyze the models in the setting of optimal control or global optimization. Then we perform a limiting procedure to reduce the state information with the help of an appropriate limit. Finally, we investigate if the results obtained for both problems coincide in the limit, in order to verify that the chosen reduction approaches are reasonable. In addition to the analytical considerations we perform some numerical simulations.

In the first case we write the semiconductor device equation as solution of an additional optimization problem. Then, we face a bi-level optimization problem, which we analyze in detail. Due to the lack of an uniqueness results for the optimal controls, we show the convergence of the controls with the help of the concept of Gamma-convergence as the Debye length tends to zero. Further, we propose some asymptotic preserving numerical algorithms for the simulation and show their convergence. Finally, we show results obtained with the proposed algorithms.

In the second part we propose a huge system of ODEs to model the state of the optimal control problem. We proceed with the passage to the mean-field limit. In terms of a flow formulation, we are able to show some convergence rate for the controls as the number of particles tends to infinity. Again, we perform some numerical simulations to underline the theoretical results.

The third part is concerned with a consensus-based global optimization problem. We propose a particle game which is based on a weighted average. This average allows to pass the mean-field limit and is our candidate for the global minimizer. Under certain assumptions on the objective function, we show that the average approximates the minimizer arbitrary well. In the proof we rely on PDE methods. The numerical results in one and 20 dimensions indicate that the algorithm performs very well in high dimensions and requires few function evaluations.

Totzeck Asymptotic Analysis of Optimal Control Problems and Global Optimization jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.