Buch, Englisch, 163 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 2721 g
Reihe: Springer Theses
First Principles and Phonon Hydrodynamics
Buch, Englisch, 163 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 2721 g
Reihe: Springer Theses
ISBN: 978-3-319-94982-6
Verlag: Springer International Publishing
Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Halb- und Supraleitertechnologie
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Technische Thermodynamik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Naturwissenschaften Physik Elektromagnetismus Halbleiter- und Supraleiterphysik
Weitere Infos & Material
Introduction.- Thermal Transport.- First Principles Calculations.- Thermal Transport of Bulk Semiconductors in the KCM.- Low Dimension Thermal Conductivity in the KCM.- Phonon Spectrum and Transient Regimes in the KCM.- Geometric Effects in Complex Experiments.- Conclusions.