Tolsa | Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory | Buch | 978-3-319-34544-4 | sack.de

Buch, Englisch, Band 307, 396 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6204 g

Reihe: Progress in Mathematics

Tolsa

Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory


Softcover Nachdruck of the original 1. Auflage 2014
ISBN: 978-3-319-34544-4
Verlag: Springer International Publishing

Buch, Englisch, Band 307, 396 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6204 g

Reihe: Progress in Mathematics

ISBN: 978-3-319-34544-4
Verlag: Springer International Publishing


This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

Tolsa Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Basic notation.- Chapter 1. Analytic capacity.- Chapter 2. Basic Calderón-Zygmund theory with non doubling measures.- Chapter 3. The Cauchy transform and Menger curvature.- Chapter 4. The capacity ?+.- Chapter 5. A Tb theorem of Nazarov, Treil and Volberg.- Chapter 6. The comparability between ? and ? +, and the semiadditivity of analytic capacity.- Chapter 7. Curvature and rectifiability.- Chapter 8. Principal values for the Cauchy transform and rectifiability.- Chapter 9. RBMO(µ) and H1 atb(µ).- Bibliography.- Index.


Xavier Tolsa is Research Professor of Mathematics from ICREA - Universitat Autònoma de Barcelona. He is the author of many research papers in connection with the topics discussed in this book. The present monograph was awarded the 2013 Ferran Sunyer i Balaguer Prize.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.