Buch, Englisch, 456 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 829 g
A First Introduction
Buch, Englisch, 456 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 829 g
Reihe: Chapman & Hall/CRC Data Science Series
ISBN: 978-0-367-52468-5
Verlag: Chapman and Hall/CRC
The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows.
Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects.
The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia’s DSCI100: Introduction to Data Science course.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
1. R and the tidyverse, 2. Reading in data locally and from the web, 3. Cleaning and wrangling data, 4. Effective data visualization, 5. Classification I: training & predicting, 6. Classification II: evaluation & tuning, 7. Regression I: K-nearest neighbors, 8. Regression II: linear regression, 9. Clustering, 10. Statistical inference, 11. Combining code and text with Jupyter, 12. Collaboration with version control, 13. Setting up your computer