Tietze Übungsbuch zur angewandten Wirtschaftsmathematik
2., erweiterte Auflage 2001
ISBN: 978-3-322-93921-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Aufgaben, Testklausuren und Lösungen
E-Book, Deutsch, 324 Seiten, Web PDF
ISBN: 978-3-322-93921-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Die Aufgaben (erster Teil des Übungsbuches) stammen im wesentlichen aus dem Lehrbuch "Einführung in die angewandte Wirtschaftsmathematik". Der zweite Teil des Übungsbuches enthält die Lösungen der Aufgaben, er dient also als "Lösungsbuch" für das Lehrbuch.
Zusätzlich enthält diese 2. Auflage zahlreiche Testklausuren, die aus an der FH Aachen (Fachbereich Wirtschaft) geschriebenen Originalklausuren entstanden sind, mit Lösungen. Die Testklausuren sollen dem Studierenden neben Informationen über Umfang und Schwierigkeitsgrad die Möglichkeit bieten, im Selbsttest innerhalb begrenzter Zeit seine Kenntnisse und Fertigkeiten in Finanzmathematik zu überprüfen.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
I Aufgaben.- 1 Grundlagen und Hilfsmittel.- 2 Funktionen einer unabhängigen Variablen.- 3 Funktionen mit mehreren unabhängigen Variablen.- 4 Grenzwerte und Stetigkeit von Funktionen.- 5 Differentialrechnung für Funktionen mit einer unabhängigen Variablen (Grundlagen und Technik).- 6 Anwendungen der Differentialrechnung bei Funktionen mit einer unabhängigen Variablen.- 7 Differentialrechnung bei Funktionen mit mehreren unabhängigen Variablen.- 8 Einführung in die Integralrechnung.- 9 Einführung in die lineare Algebra.- 10 Lineare Optimierung.- 11 Testklausuren 1–10.- II Lösungen.- 1 Grundlagen und Hilfsmittel.- 2 Funktionen einer unabhängigen Variablen.- 3 Funktionen mit mehreren unabhängigen Variablen.- 4 Grenzwerte und Stetigkeit von Funktionen.- 6 Anwendungen der Differentialrechnung bei Funktionen mit einer unabhängigen Variablen.- 7 Differentialrechnung bei Funktionen mit mehreren unabhängigen Variablen.- 8 Einführung in die Integralrechnung.- 9 Einführung in die lineare Algebra.- 10 Lineare Optimierung.- 11 Testklausuren 1–10.- Literaturhinweise.