Buch, Englisch, 456 Seiten, Format (B × H): 260 mm x 185 mm, Gewicht: 1020 g
Integrating Cyber Security and Data Science
Buch, Englisch, 456 Seiten, Format (B × H): 260 mm x 185 mm, Gewicht: 1020 g
ISBN: 978-0-367-53410-3
Verlag: Taylor & Francis Ltd
After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media.
This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.
Zielgruppe
Academic, Postgraduate, and Professional
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit
Weitere Infos & Material
Chapter 1 Introduction
PART I Supporting Technologies for Secure Data Science
Introduction to Part I
Chapter 2 Data Security and Privacy
Chapter 3 Data Mining and Security
Chapter 4 Big Data, Cloud, Semantic Web, and Social Network Technologies
Chapter 5 Big Data Analytics, Security, and Privacy
Conclusion to Part I
PART II Data Science for Cyber Security
Introduction to Part II
Chapter 6 Data Science for Malicious Executables
Chapter 7 Stream Analytics for Malware Detection
Chapter 8 Cloud-Based Data Science for Malware Detection
Chapter 9 Data Science for Insider Threat Detection
Conclusion to Part II
PART III Security and Privacy-Enhanced Data Science
Introduction to Part III
Chapter 10 Adversarial Support Vector Machine Learning
Chapter 11 Adversarial Learning Using Relevance Vector Machine Ensembles
Chapter 12 Privacy Preserving Decision Trees
Chapter 13 Toward a Privacy-Aware Policy-Based Quantified Self-Data Management Framework
Chapter 14 Data Science, COVID-19 Pandemic, Privacy, and Civil Liberties
Conclusion to Part III
PART IV Access Control and Data Science
Introduction to Part IV
Chapter 15 Secure Cloud Query Processing Based on Access Control for Big Data Systems
Chapter 16 Access Control-Based Assured Information Sharing in the Cloud
Chapter 17 Access Control for Social Network Data Management
Chapter 18 Inference and Access Control for Big Data
Chapter 19 Emerging Applications for Secure Data Science: Internet of Transportation Systems
Conclusion to Part IV
Chapter 20 Summary and Directions
Appendix A: Data Management Systems: Developments and Trends