Thorp / Thoms / Delong | The Riverine Ecosystem Synthesis | E-Book | sack.de
E-Book

E-Book, Englisch, 232 Seiten

Thorp / Thoms / Delong The Riverine Ecosystem Synthesis

Toward Conceptual Cohesiveness in River Science
1. Auflage 2010
ISBN: 978-0-08-088800-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Toward Conceptual Cohesiveness in River Science

E-Book, Englisch, 232 Seiten

ISBN: 978-0-08-088800-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This book presents the most comprehensive model yet for describing the structure and functioning of running freshwater ecosystems. Riverine Ecosystems Synthesis (RES) is a result of combining several theories published in recent decades, dealing with aquatic and terrestrial systems. New analyses are fused with a variety of new perspectives on how river network ecosystems are structured and function, and how they change along longitudinal, lateral, and temporal dimensions. Among these novel perspectives is a dramatically new view of the role of hydrogeomorphic forces in forming functional process zones from headwaters to the mouths of great rivers. Designed as a useful tool for aquatic scientists worldwide whether they work on small streams or great rivers and in forested or semi-arid regions, this book will provide a means for scientists to understand the fundamental and applied aspects of rivers in general and includes a practical guide and protocols for analyzing individual rivers. Specific examples of rivers in at least four continents (Africa, Australia, Europe and North America) serve to illustrate the power and utility of the RES concept. - Develops the classic, seminal article in River Research and Applications, 'A Model of Biocomplexity in River Networks Across Space and Time' which introduced the RES concept for the first time - A guide to the practical analysis of individual rivers, extending its use from pristine ecosystems to modern, human-modified rivers - An essential aid both to the study fundamental and applied aspects of rivers, such as rehabilitation, management, monitoring, assessment, and flow manipulation of networks

Dr. James H. Thorp is a professor and senior scientist at the University of Kansas (Lawrence, KS, United States). Prior to 2001, he was a distinguished professor and dean at Clarkson University, department chair and professor at the University of Louisville, associate professor and director of the Calder Ecology Center at Fordham University, and research ecologist at Georgia's Savannah River Ecology Laboratory. He received his Baccalaureate from the University of Kansas and Masters and PhD degrees from North Carolina State. Prof. Thorp has been on the editorial board of three freshwater journals and is a former president of the International Society for River Science. His research interests run the gamut from organismal biology to community, ecosystem, and macrosystem ecology. While his research emphasizes aquatic invertebrates, he also studies fish ecology, especially food webs related. He has published more than 150 research articles and 10 books, including five volumes so far in the fourth edition of Thorp and Covich's Freshwater Invertebrates.

Thorp / Thoms / Delong The Riverine Ecosystem Synthesis jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science;4
3;Copyright Page;5
4;Table of Contents;6
5;Foreword;10
6;Preface;12
7;Acknowledgments;16
8;Chapter 1 Introduction to the Riverine Ecosystem Synthesis;18
8.1;Background and scope;18
8.1.1;Conceptual Cohesiveness;18
8.1.2;Organization of this book;19
8.2;Basic concepts in the riverine ecosystem synthesis;21
8.2.1;Hydrogeomorphic patches and functional process zones;21
8.2.2;Ecological attributes of functional process zones;22
8.2.3;Hierarchical patch dynamics;23
8.2.4;Bicomplexity tenets;24
9;Chapter 2 Historical and Recent Perspectives on Riverine Concepts;26
9.1;Introduction;26
9.2;Patterns along a longitudinal dimension in river networks;27
9.2.1;Longitudinally ordered zonation;27
9.3;The river as a continuum – a clinal perspective;28
9.3.1;Hydrogeomorphic patches vs a continuous riverine cline;30
9.3.2;Network theory and the structure of riverine ecosystems;32
9.4;The lateral dimension of rivers – the riverine landscape;32
9.5;Temporal dimension: normality or aberration?;34
9.6;Vertical dimension: the bulk of the iceberg!;36
9.7;Other important riverine concepts;37
10;Chapter 3 Hierarchical Patch Dynamics in Riverine Landscapes;38
10.1;Hierarchical patch dynamics model – brief introduction;38
10.2;Hierarchy theory;39
10.3;Patch dynamics defined;46
10.4;Hierarchical patch dynamics in riverine research;46
10.4.1;Selective spatiotemporal scales;46
10.4.2;The nature of patches and their study in riverine landscapes;47
10.4.3;Element I: nested, discontinuous hierarchies of patch mosaics;49
10.4.4;Element II: ecosystem dynamics as a composite of intra- and interpatch dynamics;50
10.4.5;Element III: linked patterns and processes;51
10.4.6;Element IV: dominance of nonequilibrial and stochastic processes;52
10.4.7;Element V: formation of a quasi-equilibrial, metastable state;53
10.4.8;Metapopulations;54
10.5;The RES as a research framework and field applications of hierarchical patch dynamics;55
11;Chapter 4 The Spatial Arrangement of River Systems: The Emergence of Hydrogeomorphic Patches;58
11.1;Introduction;58
11.2;The spatial arrangement of riverine landscapes;60
11.3;River characterization;62
11.4;A characterization scheme for the RES;67
11.5;Application of the characterization framework;68
11.5.1;Example 1: rivers within the Murray–Darling Basin;69
11.5.2;Example 2: the rivers of the Kingdom of Lesotho;76
11.6;What scale to choose and its relevance to riverine landscapes;80
11.7;Summary;84
12;Chapter 5 Defining the Hydrogeomorphic Character of a Riverine Ecosystem;86
12.1;Introduction;86
12.2;Background philosophies and approaches;87
12.3;Determining the character of river networks: top-down vs bottom-up approaches;90
12.3.1;Top-down approaches;90
12.3.2;Bottom-up approaches;97
12.3.3;Comparing top-down vs bottom-up approaches: an example;105
12.4;Some common functional process zones;107
12.4.1;A brief review of functional process zones;107
12.4.2;Confined valley functional process zones;108
12.4.3;Partially confined functional process zones;110
12.4.4;Unconfined functional process zones;111
12.5;Summary;118
13;Chapter 6 Ecological Implications of the Riverine Ecosystem Synthesis: Some Proposed Biocomplexity Tenets (Hypotheses);120
13.1;Introduction;120
13.2;Distribution of species;121
13.2.1;Model tenet 1: hydrogeomorphic patches;121
13.2.2;Model tenet 2: importance of functional process zone over clinal position;122
13.2.3;Model tenet 3: ecological nodes;123
13.2.4;Model tenet 4: hydrologic retention;124
13.3;Community regulation;125
13.3.1;Model tenet 5: hierarchical habitat template;125
13.3.2;Model tenet 6: deterministic vs stochastic factors;127
13.3.3;Model tenet 7: quasi-equilibrium;131
13.3.4;Model tenet 8: trophic complexity;132
13.3.5;Model tenet 9: succession;134
13.4;Ecosystem and riverine landscape processes;135
13.4.1;Model tenet 10: primary productivity within functional process zones;135
13.4.2;Model tenet 11: riverscape food web pathways;136
13.4.3;Model tenet 12: floodscape food web pathways;140
13.4.4;Model tenet 13: nutrient spiraling;141
13.4.5;Model tenet 14: dynamic hydrology;143
13.4.6;Model tenet 15: flood-linked evolution;144
13.4.7;Model tenet 16: connectivity;145
13.4.8;Model tenet 17: landscape patterns of functional process zones;146
14;Chapter 7 Ecogeomorphology of Altered Riverine Landscapes: Implications for Biocomplexity Tenets;150
14.1;Introduction;150
14.2;Distribution of species;152
14.2.1;Model tenet 1: hydrogeomorphic patches;152
14.2.2;Model tenet 2: importance of functional process zone over clinal position;153
14.2.3;Model tenet 3: ecological nodes;156
14.2.4;Model tenet 4: hydrologic retention;157
14.3;Community regulation;159
14.3.1;Model tenet 5: hierarchical habitat template;159
14.3.2;Model tenet 6: deterministic vs stochastic factors;160
14.3.3;Model tenet 7: quasi-equilibrium;161
14.3.4;Model tenet 8: trophic complexity;163
14.3.5;Model tenet 9: succession;165
14.4;Ecosystem and riverine landscape processes;167
14.4.1;Model tenet 10: primary productivity within functional process zones;167
14.4.2;Model tenet 11: riverscape food web pathways;168
14.4.3;Model tenet 12: floodscape food web pathways;171
14.4.4;Model tenet 13: nutrient spiraling;172
14.4.5;Model tenet 14: dynamic hydrology;175
14.4.6;Model tenet 15: flood-linked evolution;176
14.4.7;Model tenet 16: connectivity;177
14.4.8;Model tenet 17: landscape patterns of functional process zones;179
15;Chapter 8 Practical Applications of the Riverine Ecosystem Synthesis in Management and Conservation Settings;182
15.1;Introduction;182
15.2;Revisiting hierarchy and scales;183
15.2.1;The relevance of scale in river management;184
15.2.2;Focus on catchment-based approaches to management;185
15.3;Application of functional process zones;186
15.3.1;Prioritization for conservation purposes;186
15.4;River assessments and the importance of the functional process zone scale;187
15.5;Determining environmental water allocations;192
15.6;Summary;194
16;Concluding Remarks;196
17;Literature Cited;198
18;Index;220
19;Color Plates;226



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.