Advanced Theory, Analysis, and Tools
Buch, Englisch, 529 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 826 g
ISBN: 978-3-030-68047-3
Verlag: Springer International Publishing
This book ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It is intended for advanced students, university teachers, and researchers in mechanical/structural engineering dynamics, and professional engineers aiming at strengthening their theoretical foundation. Assuming background knowledge in elementary vibrations, it provides a set of useful tools for understanding and analyzing the more complex dynamical phenomena that can be met in engineering and scientific practice. Summarizing first basic linear vibration theory, it progresses over various types of nonlinearity and nonlinear interaction to bifurcation analysis, chaotic vibrations, and special high-frequency effects. It trains the student to analyze simple models, recognize nonlinear phenomena, and work with advanced tools such as perturbation analysis and bifurcation analysis. Focusing attention on a limited number of simple, generic models, the book covers the qualitative behavior of a wide variety of mechanical/structural systems; the key examples dealt with can be fabricated as simple physical models for classroom demonstrations. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in, and significance of, nonlinear dynamics in mechanical/structural engineering. This 3rd edition adds many new topics, sections, figures, exercise problems, literature references, and other updates; it is backed up by a separately available booklet with worked out solutions to exercise problems.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Technische Wissenschaften Bauingenieurwesen Bauingenieurwesen
Weitere Infos & Material
Vibration Basics.- Eigenvalue Problems of Vibrations And Stability.- Nonlinear Vibrations: Classical Local Theory.- Nonlinear Multiple-DOF Systems: Local Analysis.- Bifurcation Analysis.-. Chaotic Vibrations.- Special Effects of High-Frequency Excitation.