E-Book, Englisch, 722 Seiten
ISBN: 978-0-12-405908-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Dr. Thompson specializes in custom R/D, analysis, and failure investigations into multi-disciplinary electrical, magnetic, electromechanical and electronic systems at Thompson Consulting, Inc. (Harvard MA).The author is also Teaching Professor of Electrical and Computer Engineering at Worcester Polytechnic Institute. He teaches graduate-level and undergraduate seminars in analog, power quality, power electronics, electomechanics, electric motors, rotating machinery, and power distribution for high-tech companies. He has taught for University of Wisconsin-Madison, covering classes in electric motors, electromechanical systems, power electronics and magnetic design.
Autoren/Hrsg.
Weitere Infos & Material
1;Intuitive Analog Circuit Design;4
2;Copyright;5
3;Dedication;6
3.1;In memoriam;6
4;Contents;8
5;Preface to the Second Edition;22
5.1;Changes in the second edition;22
5.2;Software used by the author;22
5.3;Thanks;22
5.4;From a Next Generation Analog Designer (?);24
6;Chapter 1 - Introduction and Motivation;26
6.1;The need for analog designers;26
6.2;Some early history of technological advances in analog integrated circuits;28
6.3;Digital vs. analog implementation: designer's choice;32
6.4;So, why do we become analog designers?;35
6.5;Note on nomenclature in this text;35
6.6;Note on coverage in this book;35
6.7;Further reading;36
7;Chapter 2 - Review of Signal Processing Basics;40
7.1;Review of Laplace transforms, transfer functions, and pole-zero plots;40
7.2;First-order system response;42
7.3;Second-order systems;50
7.4;Free vibration of damped, second-order system;60
7.5;Logarithmic decrement13;60
7.6;Higher order systems;64
7.7;Review of resonant electrical circuits;68
7.8;Use of energy methods to analyze undamped resonant circuits;69
7.9;Risetime for cascaded systems;71
7.10;Chapter 2 problems;73
7.11;Further reading;76
8;Chapter 3 - Review of Diode Physics and the Ideal (and Later, Nonideal) Diode;78
8.1;Current flow in insulators, good conductors, and semiconductors;78
8.2;Electrons and holes;80
8.3;Drift, diffusion, recombination, and generation;83
8.4;Effects of semiconductor doping;88
8.5;PN junction under thermal equilibrium;91
8.6;PN junction under applied forward bias;94
8.7;Reverse-biased diode;98
8.8;The ideal diode equation;98
8.9;Charge storage in diodes;100
8.10;Charge storage in the diode under forward bias;101
8.11;Reverse recovery in bipolar diodes;102
8.12;Reverse breakdown;103
8.13;Taking a look at a diode datasheet;104
8.14;Some quick comments on Schottky diodes;107
8.15;Further reading;110
9;Chapter 4 - Bipolar Transistor Models;112
9.1;A little bit of history;112
9.2;Basic NPN transistor;114
9.3;Transistor models in different operating regions;117
9.4;Low-frequency incremental bipolar transistor model;119
9.5;High-frequency incremental model;123
9.6;Reading a transistor datasheet;128
9.7;Limitations of the hybrid-pi model;133
9.8;2N3904 datasheet excerpts22;135
9.9;Further reading;141
10;Chapter 5 - Basic Bipolar Transistor Amplifiers and Biasing;144
10.1;The issue of transistor biasing;144
10.2;Some transistor amplifiers;148
10.3;Further reading;176
11;Chapter 6 - Amplifier Bandwidth Estimation Techniques;178
11.1;Introduction to open-circuit time constants;178
11.2;Transistor amplifier examples;184
11.3;Short-circuit time constants;209
11.4;Further reading;222
12;Chapter 7 - Advanced Amplifier Topics and Design Examples;224
12.1;Note on cascaded gain stages and the effects of loading;224
12.2;Worst-case open-circuit time constants calculations;225
12.3;High-frequency output and input impedance of emitter follower buffers;236
12.4;Bootstrapping;249
12.5;Pole splitting;263
12.6;Further reading;276
13;Chapter 8 - BJT High-Gain Amplifiers and Current Mirrors;278
13.1;The need to augment the hybrid-pi model;278
13.2;Base-width modulation and the extended hybrid-pi model;280
13.3;Calculating small-signal parameters using a transistor datasheet;283
13.4;Building blocks;286
13.5;Further reading;320
14;Chapter 9 - Introduction to Field-Effect Transistors (FETs) and Amplifiers;322
14.1;Early history of field-effect transistors;322
14.2;Qualitative discussion of the basic signal MOSFET;322
14.3;Figuring out the V-I curve of a MOS device;325
14.4;MOS small-signal model (low frequency);329
14.5;MOS small-signal model (high frequency);332
14.6;Basic MOS amplifiers;332
14.7;Basic JFETs;354
14.8;Further reading;364
15;Chapter 10 - Large-Signal Switching of Bipolar Transistors and MOSFETs;366
15.1;Introduction;366
15.2;Development of the large-signal switching model for BJTs;366
15.3;BJT reverse-active region;368
15.4;BJT saturation;369
15.5;BJT base–emitter and base–collector depletion capacitances;371
15.6;Relationship between the charge control and the hybrid–pi parameters in bipolar transistors;372
15.7;Finding depletion capacitances from the datasheet;373
15.8;Manufacturers' testing of BJTs;375
15.9;Charge control model examples;376
15.10;Large-signal switching of MOSFETs;402
15.11;Further reading;413
15.12;10 2N2222 NPN transistor datasheet excerpts14;415
15.13;10 Si4410DY N-channel MOSFET datasheet excerpts15;420
16;Chapter 11 - Review of Feedback Systems;424
16.1;Introduction and some early history of feedback control;424
16.2;Invention of the negative feedback amplifier;425
16.3;Control system basics;427
16.4;Loop transmission and disturbance rejection;428
16.5;Approximate closed-loop gain of a feedback loop;430
16.6;Pole locations, damping and relative stability;432
16.7;The effects of feedback on relative stability;435
16.8;Routh stability criterion (a.k.a. the “Routh test”);438
16.9;The phase margin and gain margin tests;441
16.10;Relationship between damping ratio and phase margin;442
16.11;Phase margin, step response, and frequency response;442
16.12;Loop compensation techniques—lead and lag networks;447
16.13;Parenthetical comment on some interesting feedback loops;449
16.14;Further reading;487
17;Chapter 12 - Basic Operational Amplifier Topologies and a Case Study;490
17.1;Basic operational amplifier operation;490
17.2;A brief review of LM741 op-amp schematic;499
17.3;Some real-world limitations of op-amps;502
17.4;Noise;508
17.5;Further reading;512
18;Chapter 13 - Review of Current Feedback Operational Amplifiers;514
18.1;Conventional voltage-feedback op-amp and the constant “gain–bandwidth product” paradigm;514
18.2;Slew-rate limitations in a conventional voltage-feedback op-517
18.3;The current-feedback op-518
18.4;Absence of slew-rate limit in current-feedback op-amps;522
18.5;Manufacturer's datasheet information for a current-feedback amplifier;525
18.6;A more detailed model and some comments on current-feedback op-amp limitations;526
18.7;Further reading;529
18.8;Appendix: LM6181 current-feedback op-532
19;Chapter 14 - Analog Low-Pass Filters;556
19.1;Introduction;556
19.2;Review of LPF basics;557
19.3;Butterworth filter;558
19.4;Comparison of Butterworth, Chebyshev, and Bessel filters;576
19.5;Filter implementation;583
19.6;Active LPF implementations;599
19.7;Some comments on high-pass and band-pass filters;602
19.8;Further reading;608
20;Chapter 15 - Passive Components, Prototyping Issues, and a Case Study in PC Board Layout;610
20.1;Resistors;610
20.2;Comments on surface-mount resistors;613
20.3;Comments on resistor types;613
20.4;Capacitors;617
20.5;Inductors;620
20.6;Discussion of some PC board layout issues;622
20.7;Some personal thoughts on prototyping tools;628
20.8;Further reading;640
21;Chapter 16 - Noise;642
21.1;Thermal (a.k.a. “Johnson” or “White”) noise in resistors;642
21.2;Schottky (“shot”) noise;649
21.3;1/f (“pink” or “flicker”) noise;649
21.4;Excess noise in resistors;652
21.5;“Popcorn” noise (a.k.a. “burst” noise);652
21.6;Bipolar transistor noise;652
21.7;Field-effect transistor noise;654
21.8;Op-amp noise model;654
21.9;Selecting a noise-optimized op-656
21.10;Signal-to-noise ratio;660
21.11;Things that are not noise;664
21.12;Further reading;667
22;Chapter 17 - Other Useful Design Techniques and Loose Ends;670
22.1;Thermal circuits;670
22.2;Steady-state model of conductive heat transfer;671
22.3;Thermal energy storage;672
22.4;Using thermal circuit analogies to determine the static semiconductor junction temperature;675
22.5;Mechanical circuit analogies;676
22.6;The translinear principle;682
22.7;Input impedance of an infinitely long resistive ladder;684
22.8;Transmission lines 101;685
22.9;Node equations and Cramer's rule;690
22.10;Finding natural frequencies of LRC circuits;694
22.11;Some comments on scaling laws in nature;698
22.12;Geometric scaling;699
22.13;Some personal comments on the use and abuse of SPICE modeling;705
22.14;Further reading;710
23;Appendices;712
23.1;Appendix 1: Some useful approximations and identities;712
23.2;Appendix 2: p, ?, m, k and M;713
23.3;Appendix 3: MATLAB scripts for control system examples;713
24;Index;718