Buch, Englisch, 296 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 756 g
Mathematical Modeling of Nonlinear Systems
Buch, Englisch, 296 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 756 g
ISBN: 978-0-521-62170-0
Verlag: Cambridge University Press
An integral part of engineering design is the development of models that describe physical behavior or phenomena in mathematical terms. As engineering systems have become more complex, classic linear methods of modeling and analysis have proved inadequate, creating a need for nonlinear models to solve design problems. This 1999 text provides an introduction to mathematical modeling of linear and nonlinear systems, with an emphasis on the solution of nonlinear design problems. While encouraging the use of the computer as a tool for modeling and analysis, the aim is to discuss the basic concepts underlying computer techniques and to seek analytical solutions. Among topics covered are exact solution, numerical solution, graphical solution, and approximate solution methods; and the stability of nonlinear systems. Numerous examples show how to apply modeling methods to real engineering systems. The book also includes end-of-chapter problems and case studies of challenging design problems. Intended for advanced undergraduate or beginning graduate students, this text will also serve as a helpful reference for practising engineers.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Geisteswissenschaften Design Produktdesign, Industriedesign
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Festigkeitslehre, Belastbarkeit
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
Weitere Infos & Material
Preface; Acknowledgments; 1. The design process; 2. Mathematical modeling; 3. Exact solution methods; 4. Numerical solution methods; 5. Graphical solution methods; 6. Approximate solution methods; 7. The stability of nonlinear systems; 8. Case studies; References; Index.