Thas | Comparing Distributions | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 354 Seiten

Reihe: Springer Series in Statistics

Thas Comparing Distributions


1. Auflage 2010
ISBN: 978-0-387-92710-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 354 Seiten

Reihe: Springer Series in Statistics

ISBN: 978-0-387-92710-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Provides a self-contained comprehensive treatment of both one-sample and K-sample goodness-of-fit methods by linking them to a common theory backbone Contains many data examples, including R-code and a specific R-package for comparing distributions Emphesises informative statistical analysis rather than plain statistical hypothesis testing

Thas Comparing Distributions jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;11
3;Part I One-Sample Problems;17
3.1;1 Introduction;18
3.1.1;1.1 The History of the One-Sample GOF Problem;18
3.1.2;1.2 Example Datasets;19
3.1.2.1;1.2.1 Pseudo-Random Generator Data;19
3.1.2.2;1.2.2 PCB Concentration Data;20
3.1.2.3;1.2.3 Pulse Rate Data;20
3.1.2.4;1.2.4 Cultivars Data;21
3.1.3;1.3 The Pearson Chi-Squared Test;23
3.1.3.1;1.3.1 Pearson Chi-Squared Test for the Multinomial Distribution;23
3.1.3.1.1;1.3.1.1 The Simple Null Hypothesis Case;23
3.1.3.1.2;1.3.1.2 The Composite Null Hypothesis Case;25
3.1.3.2;1.3.2 Generalisations of the Pearson 2 Test;28
3.1.3.3;1.3.3 A Note on the Nuisance Parameter Estimation;29
3.1.4;1.4 Pearson X2 Tests for Continuous Distributions;30
3.2;2 Preliminaries (Building Blocks);33
3.2.1;2.1 The Empirical Distribution Function;33
3.2.1.1;2.1.1 Definition and Construction;33
3.2.1.2;2.1.2 Rationale for Using the EDF;35
3.2.2;2.2 Empirical Processes;36
3.2.2.1;2.2.1 Definition;36
3.2.2.2;2.2.2 Weak Convergence;37
3.2.2.3;2.2.3 Kac--Siegert Decomposition of Gausian Processes;38
3.2.3;2.3 The Quantile Function and the Quantile Process;41
3.2.3.1;2.3.1 The Quantile Function and Its Estimator;41
3.2.3.2;2.3.2 The Quantile Process;42
3.2.4;2.4 Comparison Distribution;43
3.2.5;2.5 Hilbert Spaces;44
3.2.6;2.6 Orthonormal Functions;47
3.2.6.1;2.6.1 The Fourier Basis;47
3.2.6.2;2.6.2 Orthonormal Polynomials;47
3.2.7;2.7 Parameter Estimation;48
3.2.7.1;2.7.1 Locally Asymptotically Linear Estimators;48
3.2.7.2;2.7.2 Method of Moments Estimators;49
3.2.7.3;2.7.3 Efficiency and Semiparametric Inference;50
3.2.8;2.8 Nonparametric Density Estimation;51
3.2.8.1;2.8.1 Introduction;51
3.2.8.2;2.8.2 Orthogonal Series Estimators;53
3.2.8.3;2.8.3 Kernel Density Estimation;56
3.2.8.4;2.8.4 Regression-Based Density Estimation;56
3.2.9;2.9 Hypothesis Testing;56
3.2.9.1;2.9.1 General Construction of a Hypothesis Test;57
3.2.9.2;2.9.2 Optimality Criteria;58
3.2.9.2.1;2.9.2.1 Finite Sample Criteria;58
3.2.9.2.2;2.9.2.2 Asymptotic Criteria;59
3.2.9.3;2.9.3 The Neyman--Pearson Lemma;61
3.3;3 Graphical Tools;62
3.3.1;3.1 Histograms and Box Plots;62
3.3.1.1;3.1.1 The Histogram;62
3.3.1.1.1;3.1.1.1 The Construction;62
3.3.1.1.2;3.1.1.2 Some Properties;63
3.3.1.1.3;3.1.1.3 Regression-Based Density Estimation;65
3.3.1.2;3.1.2 The Box Plot;65
3.3.2;3.2 Probability Plots and Comparison Distribution;69
3.3.2.1;3.2.1 Population Probability Plots;69
3.3.2.2;3.2.2 PP and QQ plots;70
3.3.3;3.3 Comparison Distribution;75
3.3.3.1;3.3.1 Population Comparison Distributions;75
3.3.3.1.1;3.3.1.1 Definition and Interpretation;75
3.3.3.1.2;3.3.1.2 Decomposition of the Comparison Density;76
3.3.3.2;3.3.2 Empirical Comparison Distributions;81
3.3.3.2.1;3.3.2.1 Estimators of the Comparison Density;81
3.3.3.2.2;3.3.2.2 Confidence Intervals of the Comparison Density;82
3.3.3.3;3.3.3 Comparison Distribution for Discrete Data;86
3.4;4 Smooth Tests;89
3.4.1;4.1 Smooth Models;89
3.4.1.1;4.1.1 Construction of the Smooth Model;89
3.4.2;4.2 Smooth Tests;94
3.4.2.1;4.2.1 Simple Null Hypotheses;94
3.4.2.1.1;4.2.1.1 Test Statistics and Null Distributions;94
3.4.2.1.2;4.2.1.2 Interpretation of Components;95
3.4.2.1.3;4.2.1.3 Interpretation of Components when Orthonormal Polynomials Are Used;96
3.4.2.2;4.2.2 Composite Null Hypotheses;100
3.4.2.2.1;4.2.2.1 Maximum Likelihood and Method of Moments Estimators;100
3.4.2.2.2;4.2.2.2 The Efficient Score Test;102
3.4.2.2.3;4.2.2.3 The Generalised Score Test;104
3.4.3;4.3 Adaptive Smooth Tests;107
3.4.3.1;4.3.1 Consistency, Dilution Effects and Order Selection;107
3.4.3.2;4.3.2 Order Selection Within a Finite Horizon;110
3.4.3.3;4.3.3 Order Selection Within an Infinite Horizon;114
3.4.3.4;4.3.4 Subset Selection Within a Finite Horizon;115
3.4.3.5;4.3.5 Improved Density Estimates;119
3.4.4;4.4 Smooth Tests for Discrete Distributions;120
3.4.4.1;4.4.1 Introduction;120
3.4.4.2;4.4.2 The Simple Null Hypothesis Case;120
3.4.4.3;4.4.3 The Composite Null Hypothesis Case;121
3.4.5;4.5 A Semiparametric Framework;123
3.4.5.1;4.5.1 The Semiparametric Hypotheses;123
3.4.5.2;4.5.2 Semiparametric Tests;124
3.4.5.3;4.5.3 A Distance Function;126
3.4.5.4;4.5.4 Interpretation and Estimation of the Nuisance Parameter;126
3.4.5.5;4.5.5 The Quadratic Inference Function;127
3.4.5.6;4.5.6 Relation with the Empirically Rescaled Smooth Tests;128
3.4.6;4.6 Example;129
3.4.7;4.7 Some Practical Guidelines for Smooth Tests;133
3.5;5 Methods Based on the Empirical Distribution Function;135
3.5.1;5.1 The Kolmogorov--Smirnov Test;135
3.5.1.1;5.1.1 Definition;135
3.5.1.2;5.1.2 Null Distribution;137
3.5.1.3;5.1.3 Presence of Nuisance Parameters;139
3.5.2;5.2 Tests as Integrals of Empirical Processes;141
3.5.2.1;5.2.1 The Anderson--Darling Statistics;141
3.5.2.2;5.2.2 Principal Components Decomposition of the Test Statistic;142
3.5.2.2.1;5.2.2.1 Principal Components Decomposition of the Cramér--von Mises Statistic (Simple Null);143
3.5.2.2.2;5.2.2.2 Principal Components Decomposition of the Anderson--Darling Statistic (Simple Null);145
3.5.2.2.3;5.2.2.3 Principal Components Decompositions for Composite Null Hypotheses;146
3.5.2.3;5.2.3 Null Distribution;149
3.5.2.4;5.2.4 The Watson Test;154
3.5.2.4.1;5.2.4.1 The Test Statistic;154
3.5.2.4.2;5.2.4.2 Principal Components Decomposition of the Watson Statistic (Simple Null);155
3.5.2.4.3;5.2.4.3 Null Distribution (Simple Null);156
3.5.3;5.3 Generalisations of EDF Tests;156
3.5.3.1;5.3.1 Tests Based on the Empirical Quantile Function(EQF);157
3.5.3.1.1;5.3.1.1 The Empirical Quantile Function;157
3.5.3.1.2;5.3.1.2 EQF Tests for the Simple Null Hypothesis;158
3.5.3.1.3;5.3.1.3 EQF Tests for Location-Scale Distributions;160
3.5.3.2;5.3.2 Tests Based on the Empirical Characteristic Function (ECF);163
3.5.3.3;5.3.3 Miscellaneous Tests Based on Empirical Functionals of F;165
3.5.4;5.4 The Sample Space Partition Tests;167
3.5.4.1;5.4.1 Another Look at the Anderson--Darling Statistic;167
3.5.4.2;5.4.2 The Sample Space Partition Test;167
3.5.5;5.5 Some Further Bibliographic Notes;170
3.5.6;5.6 Some Practical Guidelines for EDF Tests;171
4;Part II Two-Sample and K-Sample Problems;173
4.1;6 Introduction;174
4.1.1;6.1 The Problem Defined;175
4.1.1.1;6.1.1 The Null Hypothesis of the General Two-Sample Problem;175
4.1.1.2;6.1.2 The Null Hypothesis of the General K-SampleProblem;176
4.1.2;6.2 Example Datasets;177
4.1.2.1;6.2.1 Gene Expression in Colorectal Cancer Patients;177
4.1.2.2;6.2.2 Travel Times;178
4.2;7 Preliminaries (Building Blocks);181
4.2.1;7.1 Permutation Tests;181
4.2.1.1;7.1.1 Introduction by Example;181
4.2.1.2;7.1.2 Some Permutation and Randomisation Test Theory;185
4.2.1.2.1;7.1.2.1 Definitions;185
4.2.1.2.2;7.1.2.2 Construction of the Permutation Test;186
4.2.1.2.3;7.1.2.3 Monte Carlo Approximation to the Exact Permutation Null Distribution;187
4.2.2;7.2 Linear Rank Tests;189
4.2.2.1;7.2.1 Simple Linear Rank Statistics;189
4.2.2.1.1;7.2.1.1 Ranks and Order Statistics;189
4.2.2.1.2;7.2.1.2 Simple Linear Rank Statistics;192
4.2.2.1.3;7.2.1.3 Score Generating Functions;194
4.2.2.1.4;7.2.1.4 The Rank Score Process;195
4.2.2.2;7.2.2 Locally Most Powerful Linear Rank Tests;197
4.2.2.2.1;7.2.2.1 Locally Most Powerful Linear Rank Tests for General Alternatives;197
4.2.2.3;7.2.3 Adaptive Linear Rank Tests;200
4.2.3;7.3 The Pooled Empirical Distribution Function;200
4.2.4;7.4 The Comparison Distribution;201
4.2.5;7.5 The Quantile Process;202
4.2.5.1;7.5.1 Contrast Processes;202
4.2.5.2;7.5.2 Comparison Distribution Processes;204
4.2.5.2.1;7.5.2.1 Construction;204
4.2.5.2.2;7.5.2.2 Weak Convergence;205
4.2.6;7.6 Stochastic Ordering and Related Properties;206
4.3;8 Graphical Tools;210
4.3.1;8.1 PP and QQ Plots;210
4.3.1.1;8.1.1 Population Plots;210
4.3.1.1.1;8.1.1.1 Population QQ Plot;210
4.3.1.1.2;8.1.1.2 Population PP Plot;212
4.3.1.2;8.1.2 Empirical PP and QQ Plots;214
4.3.1.2.1;8.1.2.1 Construction;214
4.3.1.2.2;8.1.2.2 Sample Size Issues;215
4.3.1.2.3;8.1.2.3 When to Use Which Plot;218
4.3.2;8.2 Comparisons Distributions;222
4.3.2.1;8.2.1 The Population Comparison Distribution;222
4.3.2.2;8.2.2 The Empirical Comparison Distribution;222
4.4;9 Some Important Two-Sample Tests;229
4.4.1;9.1 The Relation Between Statistical Tests and Hypotheses;230
4.4.1.1;9.1.1 Introduction;230
4.4.2;9.2 The Wilcoxon Rank Sum and the Mann--Whitney Tests;233
4.4.2.1;9.2.1 Introduction;233
4.4.2.2;9.2.2 The Hypotheses;234
4.4.2.3;9.2.3 The Test Statistics;235
4.4.2.4;9.2.4 The Null Distribution;236
4.4.2.5;9.2.5 The WMW Test as a LMPRT;238
4.4.2.6;9.2.6 The MW Statistic as an Estimator of ;240
4.4.2.7;9.2.7 The Hodges--Lehmann Estimator;242
4.4.2.8;9.2.8 Examples;242
4.4.3;9.3 The Diagnostic Property of Two-Sample Tests;251
4.4.3.1;9.3.1 The Semiparametric Framework;252
4.4.3.2;9.3.2 Natural and Implied Null Hypotheses;254
4.4.3.3;9.3.3 The WMW Test in the Semiparametric Framework;254
4.4.3.3.1;9.3.3.1 Implied Null Hypothesis;255
4.4.3.3.2;9.3.3.2 Null Distributions;255
4.4.3.4;9.3.4 Empirical Variance Estimators of Simple Linear Rank Statistics;258
4.4.3.4.1;9.3.4.1 The Asymptotic Variance of a Simple Linear Rank Statistic;258
4.4.3.4.2;9.3.4.2 The Jackknife Estimator of the Asymptotic Variance;260
4.4.4;9.4 Optimal Linear Rank Tests for Normal Location-ShiftModels;261
4.4.5;9.5 Rank Tests for Scale Differences;262
4.4.5.1;9.5.1 The Scale-Difference Model;263
4.4.5.2;9.5.2 The Capon and Klotz Tests;264
4.4.5.3;9.5.3 Some Other Important Tests;265
4.4.5.3.1;9.5.3.1 Measures for Differences in Scale;265
4.4.5.3.2;9.5.3.2 The Ansari--Bradley Test;267
4.4.5.3.3;9.5.3.3 The Shukatme Test;269
4.4.5.3.4;9.5.3.4 The Mood Test;270
4.4.5.3.5;9.5.3.5 The Lehmann Test;272
4.4.5.3.6;9.5.3.6 The Fligner--Killeen Test;272
4.4.5.4;9.5.4 Conclusion;273
4.4.6;9.6 The Kruskal--Wallis Test and the ANOVA F-Test;273
4.4.6.1;9.6.1 The Hypotheses and the Test Statistic;274
4.4.6.2;9.6.2 The Null Distribution;275
4.4.6.3;9.6.3 The Diagnostic Property;275
4.4.6.4;9.6.4 The F-Test in ANOVA;276
4.4.7;9.7 Some Final Remarks;277
4.4.7.1;9.7.1 Adaptive Tests;277
4.4.7.2;9.7.2 The Lepage Test;278
4.5;10 Smooth Tests;279
4.5.1;10.1 Smooth Tests for the 2-Sample Problem;279
4.5.1.1;10.1.1 Smooth Models and the Smooth Test;279
4.5.1.1.1;10.1.1.1 Smooth Models;279
4.5.1.1.2;10.1.1.2 Smooth Test Statistic and the Null Distribution;282
4.5.1.2;10.1.2 Components;283
4.5.1.2.1;10.1.2.1 The First Component: WMW Statistic;284
4.5.1.2.2;10.1.2.2 The Second Component: Mood Statistic;284
4.5.1.2.3;10.1.2.3 The Third Component: the SKEW Statistic;285
4.5.1.2.4;10.1.2.4 The Fourth Component: the KURT Statistic;286
4.5.2;10.2 The Diagnostic Property;286
4.5.2.1;10.2.1 Examples;287
4.5.3;10.3 Smooth Tests for the K-Sample Problem;290
4.5.3.1;10.3.1 Smooth Models and the Smooth Test;290
4.5.3.2;10.3.2 Components;294
4.5.4;10.4 Adaptive Smooth Tests;296
4.5.4.1;10.4.1 Order Selection and Subset Selection with a Finite Horizon;296
4.5.4.2;10.4.2 Order Selection with an Infinite Horizon;297
4.5.5;10.5 Examples;298
4.5.6;10.6 Smooth Tests That Are Not Based on Ranks;302
4.5.7;10.7 Some Practical Guidelines for Smooth Tests;303
4.6;11 Methods Based on the Empirical Distribution Function;305
4.6.1;11.1 The Two-Sample and K-Sample Kolmogorov--Smirnov Test;305
4.6.1.1;11.1.1 The Kolmogorov--Smirnov Test for the Two-Sample Problem;305
4.6.1.1.1;11.1.1.1 The Test Statistic;305
4.6.1.1.2;11.1.1.2 The Null Distribution;306
4.6.1.2;11.1.2 The Kolmogorov--Smirnov Test for the K-Sample Problem;307
4.6.2;11.2 Tests of the Anderson--Darling Type;307
4.6.2.1;11.2.1 The Test Statistic;307
4.6.2.2;11.2.2 The Components;309
4.6.2.3;11.2.3 The Null Distribution;311
4.6.2.4;11.2.4 Examples;312
4.6.3;11.3 Adaptive Tests of Neuhaus;314
4.6.3.1;11.3.1 The General Idea;314
4.6.3.2;11.3.2 Smooth Tests;316
4.6.3.3;11.3.3 EDF tests;316
4.6.4;11.4 Some Practical Guidelines for EDF Tests;317
4.7;12 Two Final Methods and Some Final Thoughts;319
4.7.1;12.1 A Contigency Table Approach;319
4.7.2;12.2 The Sample Space Partition Tests;321
4.7.3;12.3 Some Final Thoughts and Conclusions;323
5;A Proofs;328
5.1;A.1 Proof of Theorem 1.1;328
5.2;A.2 Proof of Theorem 1.2;329
5.3;A.3 Proof of Theorem 4.1;330
5.4;A.4 Proof of Lemma 4.1;331
5.5;A.5 Proof of Lemma 4.2;332
5.6;A.6 Proof of Lemma 4.3;332
5.7;A.7 Proof of Theorem 4.10;333
5.8;A.8 Proof of Theorem 4.2;333
5.9;A.9 Heuristic Proof of Theorem 5.2;338
5.10;A.10 Proof of Theorem 9.1;339
6;B The Bootstrap and Other Simulation Techniques;341
6.1;B.1 Simulation of EDF Statistics Under the Simple Null Hypothesis;341
6.2;B.2 The Parametric Bootstrap for Composite Null Hypotheses;342
6.3;B.3 A Modified Nonparametric Bootstrap for Testing Semiparametric Null Hypotheses;342
7;References;344
8;Index;355



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.